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Recently, central methods combined with ENO limiting [1], [2], [3] have be-
come very popular for hyperbolic problems. The main advantage is the sim-
plicity of this method since no Riemann problem has to be solved. The only
information necessary to know from the system under consideration is an es-
timate of the spectral radius of the linearization of the flux, corresponding to
the maximum wave speeds of the underlying system. Therefore, the method
is attractive also for problems where the Riemann or approximate Riemann
problem is too difficult to solve or to implement. This method has also been
applied to the incompressible Navier-Stokes equation in two dimensions us-
ing the vorticity-stream function approach [4], [3]. This approach has been
questioned by Nielsen and Naulin [5]. They compared the CWENO-scheme
as introduced by Kurganov and Levy (section 5, example 5) [3] with a stan-
dard spectral scheme and a finite difference approach using the Arakawa [6]
discretization. The comparison focused on the conservation of integral quan-
tities as the total energy and the total enstrophy. Their conclusion was that
the spectral and Arakawa scheme outperformed the CWENO scheme quite
dramatically in respect of numerical dissipation. The result is that both the
Arakawa and the spectral scheme converge to the true solution from above in
respect to the global quantities (energy and enstrophy are too high if under-
resolved) whereas the CWENO scheme converges (more slowly) from below
(energy and enstrophy are too low). Nielsen and Naulin [5] did not compare
the amount of spurious oscillations where the CWENO proves to have much
better properties.

Here, we demonstrate that simply switching from the stream-function ap-
proach to the integration of the primitive variables u with a projection method
as discussed by Brown et al [9] reduces the numerical dissipation quite substan-
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tially so that the CWENO scheme approaches the properties of the spectral
and the Arakawa scheme without producing oscillations near strong vortex
sheets. For a second order scheme based on the primitive variables the ab-
sence of spurious oscillations has been demonstrated by Kupferman and Tad-
mor [7]. Concerning the amount of numerical operations for the two different
formulations, it has to noted that for the vorticity/stream function formu-
lation a Poisson equation equation for the streamfunction and the CWENO
timestepping for the vorticity have to be solved, whereas for the formulation
in the primitive variables a Poisson equation equation for the pressure and
two CWENO steps for ux and uy have to be solved. It turns out the the time
spent in the Poisson solver nearly equals the time spent in the CWENO step
with the result that using the primitive variables is about 1.5 times slower
than the vorticity/stream function formulation.

In the CWENO strategy there are two places where numerical dissipation is
introduced: first by the ENO limiter which is the strongest source of dissipa-
tion and second by the averaging over the left and right approximations in
the reconstruction step. The dissipation produced by this source can be min-
imized by sharpening the estimates of the maximum wave speeds. However,
in the vorticity-stream function formulation vortex sheets have nearly a delta-
function like behavior in the vorticity whereas the primitive variables only
develop steep gradients with almost bounded values of velocity. Therefore, it
is more natural to work with the primitive variables then with vorticity. The
primitive variables are integrated with the projection scheme similar to that
of Kim and Moin [8] (see also Brown et al [9]) where the basic time step is
listed for completeness:

u∗ − un

∆t
+ [((u · ∇u)]n+1/2 = ν∆un (1)

∆p =
∇ · u∗

∆t
(2)

un+1 = u∗ −∆t∇p (3)

The integration in time is carried out with a standard low-memory third order
Runge-Kutta step. For the range of high Reynolds numbers considered here we
use an explicit treatment of the dissipation. The CWENO strategy is carried
out for the velocity field u and the pressure p. Here, the treatment of the
velocity is consistent as for the compressible Euler equations, whereas the
velocity in the vorticity-stream function formulation is treated as if it where
a passive quantity [3].

The difference of numerical dissipation for the CWENO treatment of the
vorticity-stream function formulation and the integration of the primitive vari-
ables can clearly be seen in Figures 1 and 2 where we compare at a fixed time
the evolution of two vortices as used by Nielsen and Naulin [5]. Figure 1 shows
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the result obtained by using CWENO with the vorticity stream function for-
mulation whereas Figure 2 shows the same simulation using the primitive
variables. It can clearly be seen that the maximum of vorticity is much better
preserved and that the vortex spirals are much better resolved than in the
vorticity stream function formulation. In addition, the spin up of the vortex
arms differs in both calculations due to the different dissipation of the schemes.
This has quite some impact on the global quantities as total energy and to-
tal enstrophy which are shown in Figure 3 and 4, respectively, for the two
approaches. Simulation were carried out with two resolutions using 2562 and
5122 mesh points. As can be seen from the time evolution of the enstrophy,
the vorticity-stream function simulation with 5122 mesh points reaches the
quality of the integration of the primitive variables obtained with 2562 mesh
points.

Another important advantage of the velocity-based scheme results from the
easy combination with the penalty method [10], which will be discussed in a
forthcoming paper.

We conclude that when applying the CWENO strategy to incompressible flows
the formulation in primitive variables should be preferred.
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Fig. 1. Two Gauss-vortices with Re = 90000 at time t = 10, using vorticity-stream
function (VS)-scheme

Fig. 2. Two Gauss-vortices with Re = 90000 at time t = 10, using PM II-scheme
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Fig. 3. Temporal evolution of enstrophy for both schemes, Re = 90000
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Fig. 4. Temporal evolution of enstrophy for both schemes, Re = 90000
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