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1 Introduction - Motivation of the problem

- Plasma: long - range interactions;

LANDAU description for homogeneous, electrostatic plasma 2:

Of(v:t 1 of(v;t
fg; )+mme fé‘; >:CLandau{f}

F,,; should be the mean-field (VLASOV) force 3.

1st Question:

What if an external force field is present ¢

(e.g. Lorentz forces in plasma)

- Anti-paradigm 1:
FEztrapolation: F may represent an external force (“by the hand”) - NOT

rigorously considering the influence of the field on the collision term:

of(vst) 1 of(vit)
875 + E Fea:ternal T - CLandau{f}

2nd Question:

What if the d.f. is NOT uniform i.e. f = f(x,v;t) ¢

- Anti-paradigm 2:
Phenomenological generalizations of the Landau equation:

of(x,v;t) ~ Of(x,v;t) 1 _0f(x,v;t)
o TV ox Twl ov - Cteand])

(same rhs, no field)

2up to A2 (in the interaction).

3The Vlasov term cancels in our model; see below.
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- thus, we're after a plasma kinetic equation in the form:

df (x,v;t) . of (x,v;t) L1 pdf(x,vit)

ot ox m ov

= C{f; interactions; field}

2 The model

Two subsystems, weakly coupled to each other:
- a ‘tagged’ test-particle X

and

- a heat bath (the “reservoir” R): N particles (species ;)

AND

+ an external magnetic field:

B =Bz

(uniform & stationary)



2.1 Equations of motion for the test-particle

1
V = —[Fext(X,V;t) + AFint(x, v; Xg; t)] (1)
m

* Fext(X,v; 1) is due to the external field; e.g. for a uniform magnetic field

along the z-axis:

Foxt(X, Vit) = ch“’ « B)

* Fint(X, v; XR; t) denotes the “stochastic” force due to interactions of the

test-particle with the reservoir particles surrounding it i.e.

Fine (%, v; Xni#) — % Fingy(X() — %5(0)))

> OV ([x(t) — x3(t)1)
j=1 0x(t)

The “random” force Fin(t) is thus described by a Gaussian process,

determined by a vanishing mean-value:
(Fint(1)) g = E{Fine(x,v; 1)} =0

and the two-time correlation function:

I
I

C(x,v;ti,t2) = (Fint(t1) Fint(t2))r = IE {Fint(t1) Fine(t2)}

/FR dXR OR(XR) Fin (tl) Fint (tQ)

* The interaction potential V' is assumed to be a long-range electrostatic

potential V().



2.2 Solution of the dynamical problem for the “free” particle

* Simple case: B = B2

d(x) _( v _(
dt (V(t)) (Wic(va)) B (Q(V XB))

(known) exact solution (helicoidal motion):

z(t) = x4+ Q usinQt + sQ v, (1 — cosQt)
y(t) = y — s, (1 — cosQt) + Q v, sint
2(t) = z+ vt
v(t) = vy cosQt + sv, sinft
vy(t) = —sv,sinQt + vy, cos§t
v,(t) = wv, = const.
l.e.
<x(t)> _ (I N(t)) (x) @
vi)) \o R())\v
that is:
M(H) =L  M(t)=0
cosQit s sinQt 0
N@)=R*(t)=| —s sinQt cosQt 0
0 0 1
sin ¢ s (1 —cosQt) 0
N()= [ d B (t) =7 | s (cos—1)  simQt 0| (3)
0 0 Ot
* Definitions: 2 = Q; = |f:lf : s = sgn(e;) = £1.




3 Statistical description - the Generalized Master Equa-

tion

* weak-coupling approximation: the mutual interaction between particles

is taken to be very small), as compared to their average kinetic energy (i.e.

A (A< 1),

* (Non-markovian) “Generalized Master Equation” (GME) to 2nd order

in the interaction:

O f(X5t) = Lo f(X;t)

4 ’ ’
+ N ng [ dr [[dXy Ly U(r) Ly 66,(XY) f(Xit =)

(4)
k UO(,7_> — eLoT
* Rem.: the mean-field (Viasov) term, in order A!, disappears once we

take the reservoir state to be homogeneous);

* Lo is the “free” Liouville operator defined previously;

the binary interaction Liouville operator L, is given by:

1 0 15)

my Ovs  my 0vy

Ly = —Fi(|xs —xa)(

IV (lx — x; 1 0 1 0
(’ax ) (_)

mov  mq0vy

* Problem: (‘Which’) Markovian approximation (7)
Two methods to be tested in the following...

(see Poster for formal details)



4 Quasi-markovian approximation: the ©- operator

4.1 Quasi-markovian master equation

“WILD” Markovian assumption:

flt=1) = U(=7) f()

so (4) becomes the ‘quasi-markovian’ Master Equation:

of  of
a " Vox T m

1. of
7FeXt87V

o
€q

t
ne [ dr [ dXy Ly U(r) Ly, U(=7)

= Lof(X) + [ dr K(r) f(X)

* Rem.: the interaction Liouville operator L; is the

operator Ly (cf. definition (5)).

* Important ! The propagator has to be evaluated by

binary interaction

taking into account

the external field; U(t) does not commute with the velocity gradient 2.

Indeed, if we define:

(note that Dy, (0) = a?,i)
we find:
0 T 0
_nN.T !
Dy, (t) = Ni~(t) Ox; () ov;
(obviously: Dy, (t) ¢(v1) = !’T(t) %‘?) );

(cf. [Misguich et al.1975]).

1R



4.2 “Quasi-markovian” Fokker-Planck equation

The following PDE is obtained:

of of 1 of 0 9 9
a + Vaix + %Fextaiv - aiv[A()g V) ov + B(X7 V) Ox + ,ua(x, V)] f
(8)

(f = f(x,vit); p=m/my).

* After an algebraic manipulation, the QMFPE (8) takes the form:

of of 1 of 0 9 0

bl “ b S Fg—r = ——(F© — . (DY 9
o " Vox T ity = aqs T aqaq B O
where ¢ = (x, V).
The 6x6 diffusion matrix is:
0 BT
D(x,v)=| — *7 (10)
;B A

and the 6d dynamical friction vector F© reads: F© = (0,F)" where F is
the 3d vector defined by:

0A;; 0B;;
Fi=—pa . 4 ,j=1,2,3
1 a; + dv, + oz, 1,]
* In the homogeneous case:
of 1 of o 0 0
S P = Ay f) = o (F,
ot i m v (Fi])

c%z- 691)]( 4 f) (91}1'
(9-HOM)
(f = f(v;1))



4.3 Coefficients

é(X,V) n oo
= — dr | dx1 | dvi ¢eq(V1
Bow [ ik [ dxa [ dvidey(va)
R"(7)
Fine([x — x1]) @ Fine(x(=7) = xa (=)}
N™(7)
n oo R'(r)
= — dr C(x,v;t,t — 7
b G
a(x,v) = _77:; OOOdT/dxl/.dvl beq(V1)
([ — 1) & Finax(—7) — xa(~7) ) N ()
= —WT;/OOOde(X,V;t,t—T) (11)

4.4 Problem: The positivity issue !

* Properties: The K.E. should preserve (i) the reality, (ii) the normalization

and (iii) the positivity of the (probability) distribution function.

Furthermore, (iv) an H-theorem should be satisfied.

* The diffusion matrice D should be positive definite, i.e. one should have,

for any a € R° :

(a,Da) = a’Da =a’D"Ma > 0

This criterion is definitely not satisfied here, as det D = —(detC)? < 0.

* Consequense: the Quasi-Markovian F.P. equation (8) does not guarantee

the preservation of the positivity of the probability distribution function f.

9



5 Towards a “Markovian” kinetic equation...

* Consider the operator &:

@—TlgroloT/ A U(—t)OU(t) (12)

5.1 (i) the homogeneous case

* The “old” O- and the “new” ®-operators coincide in this case!
5.2 M-FP equation: (ii) the general (inhomogeneous) case

* The Markovian FPE reads:

of | of e af

(13)

(see Poster).

10



6 Coefflicients

The diffusion coefficients in the FPE are defined by:

D, % cos 4t
D, _y 1 /t 0 {C’i’a/} (—s*) % sin Q7

DY o Mgy 0 Cﬁ"a/ (14 5 cosQT)
D, 1

(14)
where C{O‘f"h}(v 1,v1;€2) are elements of the (diagonal) force-correlation ma-

trix C(7) = (Fint(t) Fint(t — 7)) g; they are given by:

Cry = nw(2m)® [ dvy ¢ (va) [ dk V2 enNin(mm o= tainonm g2
(15)
(a summation over n, m is understood) where v; (v1,), ¢ = 1,2, 3 denote
the velocity coordinates of the test- (R-) particle and Vj stands for the
Fourier transform of V (r).
Remember that V = V(|r|) = V(r) implies V = V([k|) = Vi. The

dynamical friction terms in (3) are given by:

oD, 0D oD, 0D
Foo= (L) (G =+ 55 Fy= (4 (—5 5+ 5 )
T Y x Y
oD

(1t = mqa/mey) [1]. Note the explicit dependence on the magnetic field as
well as on the form of the reservoir equilibrium d.f. ¢., = ¢y(vy,v)) and

the interaction potential V (r).

11



6.1 Non-dimensional expressions

6.1.1 Correlations

Notice that the above relations imply a set of expressions for the force
correlation functions CY| |y (7), readily obtained by comparing (9), (10)
to (5). The integration variable k; therein can be re-scaled to the non-

dimensional variable: x = Z—; = (14 ]]:%)1/ 2: relation (6) thus becomes:

Tmazx 2 2\ in2 QT 1 {170}
«Q _ 4 A% (1—x7) sin® 5+ .
Ciip(r) = 4ne k’D/1 A (1 :132)
0 ~
J0(2/\\/l’2 - ]_UJ_ Sin;) F{J_ I}

(17)

F = F(¢(z,7),7)) is given by:

Bl = +Vmo +* _%_1[(14[%5 F 52 7)) et )’ Erfc(¢+sv)}
| (18

¢ = pram o) = v/ve

k
@J_:UJ_/\/E, A\ = 05:...:\/5?;’

(having set 0, = oy = o for simplicity). Remember that 0, =2kpTo/m, =

QUfh’a is related to the thermal velocity (i.e. the temperature), Q, =

4dme? dmeing

eq B/m, cis the cyclotron (gyroscopic) frequency, kp = i~ is the Debye

Wena12
(Amcare)l/

83

wave-number and wy, , = is the plasma (Langmuir) frequency (so

wp = /o kp/2). Notice the interplay of collision and magnetic field scales

through >\ ~ Tgyro — Uthermal
Tcoll - VAlfven ’
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6.1.2 Diffusion coefficients

As we saw, the final formulae for the diffusion coefficients can be simpli-

fied by rescaling the integration variables k, (Fourier wave-number) and 7

(time) therein to the non-dimensional variables z = ,% = (1+ Z—;)l/ 2 and
D

7" = Qr. The diffusion coefficients D,(t) are thus given by:

D,
4 /
be _ 2V2net [ar [ dw 0w (1 )T
l)tyxj m2\/kgT /0 1 2
D
% cos T’
I —s%) L ging’
Jo(AVa? — 1oy, sin—) Fy (=2 (19)
2 (1+ %COS 7')
1

where all quantities in the rhs except %T% = Dy are non-dimensional;

Jo is a Bessel function of the first kind; F' = F(¢(z,7'), 7)) is given by:

~ T 5 S T2 -
Fi = £Vmo + 1 21: 1[(1 F 20 F5200)) T Brfe(p + S’U)}
s=+1,—
(20)
where

1 w mu?
f —A ! — 2l ~* — T Tx 1/2 J_

Remember that kp = (%)1/ ? is the Debye wave-number and w,, =

<4ﬂeina)1/2

(03

is the plasma (Langmuir) frequency. Notice the interplay of

1 1 1 T 70 —_—
collision and gyration scales through A\ ~ =#° = %thermal
Tcoll UAlfven
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7 A numerical parametric study

(cf. Poster)
Typical values:
temperature T'= 10 KeV/
particle density n = 10" em™3 = 102 m =3
implying a w,, = 5.64 - 10! 57!
Q. =17610" x B s71,

(B being expressed in Tesla).

* Correlations are found to decrease quite fast in time. The magnetic field

seems to enhance correlation, since the higher its magnitude B (~ ), the
higher the value of C'| (7); see figure 1.

Physically speaking, this fact reflects particle confinement by the mag-
netic field, since particles ‘stick’ to their helicoidal trajectory around the

magnetic field lines and thus ‘feel” each other for longer periods of time.

* Diffusion coefficient D, (t):

The asymptotic value D(oo) depends on the field 2.

* Relaxation times: Remember that the diffusion coefficients D (%)

are related to the inverse of the time needed for relaxation towards equi-
librium [8]. We therefore see that the magnetic field favours thermalization
(i.e. relaxation of the distribution function towards a maxwellian state).
This seems to agree with physical intuition (the more ‘confined’ the par-
ticles, the more they influence each other and the more efficient collisions

are towards relaxation).
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8 Influence on moment equations

Defining the moments:

Particle density:
[dv f(x,vi t) = na(xt)
Mean velocity:
/dv v f(x, vy t) = na(x,t) ur(x,t)
Pressure:
/dv (vp — up) (U — up) f(x,v; t) = PS(%x,1)

etc. we obtain a set of modified evolution equations:

ong 0 (1 %)
= Na U
ot ox, "
O manatt®) = 0 (i o a@ %, + Po) + €0 o (Ey + - B,) + R
A, Mg N WUy, = 7 MaNag U, Uy, ™m €a Ny T —€rmn Um Dn r
ot ox,, c
0T, L0, 2 out 2, Oul 20q, 2 o°
ot ox, 3 ox, 3 ox,, 30z, 3

(21)

where the collisional terms RS, Q% now contain space diffusion terms:

Friction vector:

r

Ry = mg /dVUr’C{f(X,V; t)}
Collisional heat-exchange rate:
o 1 a2
Q"= Jmq [dvv—uPK{f(x.vi 1)}
etc. (IC{f} is our new cylindrical-symmetric collision term !)
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9 Conclusions

* Agreement with: [Ghendrih 1988] (influence of the magnetic field)

yet
* contradiction with the standard description used in the past, where
the influence of the magnetic field on the collision term is either under-
estimated [Montgomery et al. 1974 +] or neglected [Ghendrih 1987] when

discussing the transport properties of plasma.

In conclusion, we have reported new exact formulae for the diffusion
coefficients in magnetized plasma. These formulae suggest an explicit de-
pendence on both particle velocity and physical parameters such as plasma
temperature, density, and - the point we wanted to focus upon - the mag-

nitude of the magnetic field. A more extended study will be reported soon.

(References: see Poster)
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Figure 1: The perpendicular force auto-correlation function C'(7;v, v, B)

(normalized over C'| (T = 0)) as a function of time 7 (scaled over a cyclotron
period T, i.e. Qr/2m). In ascending order, the magnitude of the magnetic
field is set to B = 1,2,3 T respectively. Both velocity components are
taken equal to vy, = (T/m)'/2. C, can be seen to decrease very fast in time,
still bearing a ‘tail’ of gradually smoothed out peaks every gyration period
Tyyro (actually a signature of the magnetic field; see enclosed figure 1b).
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Figure 2: The perpendicular velocity diffusion coefficient D, (¢;v.,v), B)
versus time ¢ (scaled over Ty,,,) for values of B =1,2,3 T, respectively, in
ascending order. D is seen to increase with B. The small ‘kinks’ at every
gyration reflect the form of C'; (cf. fig. 1b).



