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Abstract

The rigorous derivation of a collision operator for a test-particle weakly coupled to a
large heat-bath in thermal equilibrium, is presented, from first non-equilibrium statistical
mechanical principles. Both subsystems are subject to an external force field. In principle,
inter-particle interactions, assumed to be of long-range type and weak, are influenced by
the existence of the field, which may strongly modify particle trajectories between colli-
sions. The standard Liouville description leads to a Generalized Master Equation (GME),
whose kernel has to be evaluated along the system’s trajectories, taking into account the
particular microscopic laws of motion corresponding to the dynamical problem in con-
sideration. A Fokker-Planck-type equation is obtained in a ‘markovian’ approximation.
Such an equation does not preserve the positivity of the distribution function. By apply-
ing techniques developed in the theory of quantum open systems, a correct Fokker-Planck
equation is derived. Explicit expressions for the diffusion and drift coefficients, depending
on the external field, are obtained.

The formalism is applied in the case of a charged particle moving in a uniform magnetic
field against (and relaxing towards) a Maxwellian background plasma. By explicitly taking
into account both field effects and collisions, a new (cylindrical symmetric) collision term
is derived and discussed. In the absence of magnetic field, the well-known Landau limit
is recovered as expected.

1Contribution to the International Conference on ‘Collisions in the Universe’, Namur, nov. 2001.
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1 Introduction

1. A number of works in Non-Equilibrium Statistical Mechanics have been devoted to the study

of relaxation of a small subsystem close to (but not at) equilibrium weakly interacting with a

heat bath. A common aim of such studies is the derivation of a kinetic equation, describing the

evolution in time of a phase-space density function.

2. As a starting point one takes either the BBGKY hierarchy of equations for reduced

distribution functions (rdf) or formal projection-operator methods. In a generic manner, both

approaches rely on a (‘non-markovian’) generalized master equation (GME), obtained in

2nd order in the interaction. It should be stressed that kernel of the GME has to be evaluated

along the system’s trajectories (see figure), since the particular microscopic laws of motion may

strongly modify the form of the collision operator.

3. A Fokker-Planck-type equation is often derived from the GME as a “markovian” approxi-

mation. In general, such an equation does not preserve the positivity of the distribution function

f(x,v; t). This problem is in fact generic - regardless that is of the particular dynamical prob-

lem considered; it was first been pointed out in the theory of open quantum-mechanical systems

and possible remedy to the situation was suggested [1]. An analytical procedure introduced

therein [2], which essentially amounts to time-averaging with respect to free-particle motion,

was recently tested in the magnetized plasma case and a modified plasma kinetic equation

was obtained [3]. All coefficients in the equation are explicit functions of the dynamical vari-

ables {x,v} and the external field; this fact suggests that the external field should a priori be

explicitly taken into account when deriving a collision term, in one way or another.

4. This work aims in pointing out:

(i) the forementioned mathematical discrepancy which characterises a widely used kinetic evo-

lution operator, once one takes into account inhomogeneity effects and

(ii) the necessity of explicitly taking into account the magnitude of the external force field

(if such a field exists) when deriving analytic expressions for diffusion coefficients related to a

specific system. In this paper, the problem is exposed in a general manner and then bed-tested

in the case of a charged particle moving in a uniform magnetic field against a Maxwellian

background.

Explicitly taking into account the details of single particle motion we have derived a Landau-

type kinetic equation and pointed out the positivity (non-)preservation nuisance. Then, apply-

ing the forementioned averaging formalism a new kinetic equation is obtained and discussed.

Analytic expressions for all coefficients are obtained.

2 The model

We consider a test-particle (t.p.) ‘Σ’ surrounded by (and weakly coupled to) a homogeneous

reservoir R ≡ {1, 2, ..., N}; X = (x,v) ≡ (xΣ(t),vΣ(t)) and XR ≡ {Xj} = (xj(t),vj(t)) will

2



denote the coordinates of the test- (Σ−) and reservoir- (R−) particles respectively. In principle,

the whole system is subject to an external force field.

The Hamiltonian of the system is:

H = HR + HΣ + λHI (1)

where HR (HΣ) denotes the Hamiltonian of the reservoir (t.p.) alone:

HR =
N∑

j=1

Hj +
∑
j<n

N∑
n=1

Vjn

while HI stands for the interaction (weak) between the two subsystems:

HI =
N∑

n=1

VΣn

(‘tagged’ by λ � 1). Vij ≡ V (|xi − xj|) (i, j = 1, 2, ..., N, Σ) is a (typically long-range) binary-

interaction potential. The resulting equations of motion for the test-particle are:

ẋ = v ; v̇ = F0(x,v) + λFint(x,v;XR; t) (2)

The force F0 is due to the external field. The interaction force

Fint(x,v;XR; t) = − ∂

∂x

∑
V (|x− xj|)

is actually the sum of interactions between Σ− and R− particles surrounding it; it may be

viewed as a random process, as the reservoir is assumed to be in equilibrium 2.

We will assume that the zeroth-order (‘free’) problem of motion (i.e. (2) for λ = 0) in d

dimensions (d = 1, 2, 3) yields a known analytic solution in the form:

v(t) = M′(t)x + N′(t)v

x(t) = x +
∫ t

0
dt′ v(t′) = M(t)x + N(t)v

i.e. (
x(0)(t)

v(0)(t)

)
=

(
M(t) N(t)

M′(t) N′(t)

)(
x

v

)
≡ E(t)

(
x

v

)
(3)

3 with the initial condition {x,v} ≡ {x(0)(0),v(0)(0)} (implying E(0) = I). The form of the

d× d matrices {M(t),N(t)} depends on the particular aspects of the dynamical problem taken

into consideration; For the sake of clarity, a few explicit examples are given in the following.

2Fint actually comes out to be described by a stationary Gaussian process, determined by a vanishing
mean-value.

3In a d−dimensional problem, {M(t),N(t)} are d×d matrices whose form depends on the particular aspects
of the dynamical problem taken into consideration; properly speaking, one has(

Mij(t) Nij(t)
M ′

ij(t) N ′
ij(t)

)
=
( ∂x

(0)
i

(t)

∂xj

∂x
(0)
i

(t)

∂vj

∂v
(0)
i

(t)

∂xj

∂v
(0)
i

(t)

∂vj

)
(the derivatives are evaluated at the initial condition {x0,v0}) thus (3) may be viewed as a linearized (in xj , vj)
solution of the - possibly nonlinear - ‘free’ (i.e. collisionless) motion problem.
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2.1 Example 1: Free motion

F(0) = 0 (cf. (2)) so {xi(t), vi(t)} = {xi + vit, vi} (i = 1, · · · , d) i.e. Mij = δij, Nij = δij t (so

M ′
ij = 0, N ′

ij(t) = δij).

2.2 Example 2: Harmonic oscillator in 1d

The force reads:

F (0) = −mω2
0x

so the single-particle equation of motion ((2) for λ = 0) yields the solution (cf.(3)):

(
x(0)(t)

v(0)(t)

)
=
(

cos ω0t ω−1
0 sin ω0t

−ω0 sin ω0t cos ω0t

)(
x

v

)
≡ E(t)

(
x

v

)

2.3 Example 3: Gyrating motion of a charged particle

4 ... moving in a uniform magnetic field (along ẑ): F(0) is now the Lorentz force:

FL =
eα

c
(v ×B) ≡ sΩm(v × ẑ)

(Ω is the gyroscopic frequency Ωα ≡ |eα|B
mαc

and s = eα

|eα| = ±1); the well-known (helicoidal)

solution reads: (
x(0)(t)

v(0)(t)

)
=

(
I N(t)

0 R(t)

)(
x

v

)
≡ E(t)

(
x

v

)
(4)

where

Rα(t) =


cos Ωt s sin Ωt 0

−s sin Ωt cos Ωt 0

0 0 1



Nα(t) =
∫ t

0
dt′ Rα(t) = Ω−1


sin Ωt s (1− cos Ωt) 0

s (cos Ωt− 1) sin Ωt 0

0 0 Ωt

 (5)

2.4 Group properties

Notice that the 2d× 2d matrix E(t) in (3) satisfies the group property:

E(t)E(t′) = E(t + t′) ∀t, t′ ∈ <

implying

E(−t) = E−1(t)

4(particle species α ∈ {e, i, ...}, mass mα, charge eα)
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as well as a number of relations for the d×d sub-matrices; in particular, if M(t) = I as in cases

in §2.1, §2.3, we have:

N′(t)N′(t′) = N′(t + t′) , N(t′) + N(t)N′(t′) = N(t + t′) ∀t, t′ ∈ <

thus, setting t′ = −t:

N′−1
(t) = N′(−t) , N(−t) = −N(t)N′(−t) 6= N−1(t) ∀t ∈ <

3 Statistical formulation

The test-particle’s reduced distribution function is f(x,v; t) = (I, ρ)R ≡
∫
ΓR

dXR ρ, where

ρ = ρ({X,XR}; t) (F = F (XR)) denotes the total (reservoir) phase-space distribution function

(d.f.), which is normalized to unity:
∫

dX ρ = 1 (
∫

dXR F = 1).

The equation of continuity in phase space reads:

∂ρ

∂t
+ vj

∂ρ

∂xj

+
∂

∂vj

(
1

m
Fj ρ) = 0 (6)

where a summation over j (= 1, 2, ..., N, Σ) is understood.

3.1 Reduction of the Liouville equation - BBGKY hierarchy

The standard procedure consists in defining appropriate ‘s-body’ reduced distribution functions

(rdf), among which the (1−body-) test-particle rdf:

f(x,v; t) = (I, ρ)R ≡
∫
ΓR

dXR ρ

and then appropriately integrating the N−particle Liouville equation in order to obtain a

hierarchy of coupled equations of evolution of the rdf’s. This is more or less a standard procedure

[4] and details will be omitted here. In order to obtain an equation of evolution for f(t), the

BBGKY hierarchy of equations thus obtained can be truncated to 2nd order in λ by assuming

interactions to be weak (i.e. λ � 1). One thus obtains the system:

(∂t − LΣ
0 ) f(X; t) = λ2

∫
dX1 LI g(X,X1; t) +O(λ3)

(∂t − LΣ
0 − L1

0) g(X,X1; t) = λ LI F1(X1) f(X) +O(λ2) (7)

where Lj
0 is the “free” Liouvillian in the field:

Lj
0 · = −vj

∂ ·
∂xj

− 1

mj

∂

∂vj

(F0 · ) (8)

and LI ≡ LΣ1 is the binary interaction operator LI ≡ LΣ1 where:

Lij = −Fint(|xi − xj|)
(

1

mi

∂

∂vi

− 1

mj

∂

∂vj

)
(9)
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(i, j ∈ {Σ, 1α′
R }). As obvious, f = f(Xα; t), F1(X1α′

R
) and f2(X

α,Xα′
1 ; t) denote the Σ−1-body,

R−1-body and (1α′
R + Σα)−2-body rdf’s respectively and g = g(Xα,Xα′

1 ; t) is the ‘two-body’

(1α′
R + Σα) correlation function:

g(X,X1; t) = f2(X
α,Xα′

1 ; t)− F (Xα′

1 )f(Xα; t)

Note that the mean-field (Vlasov) term, in order λ1, disappears since we have assumed the

reservoir to be in a homogeneous equilibrium state F = nα′φα′
eq(v1).

3.2 Solution of the problem in λ0

Formal solution of the “free” (collisionless) Liouville equation:

f(t) = eL0 t f(0) ≡ U (0)(t) f(0)

Note that:

U(t) f(x,v) ≡ U(t) f(x,v; 0) = f(x,v; t) = f(x(−t),v(−t); 0) ≡ f(x(−t),v(−t)) (10)

(actually a consequence of Liouville’s theorem) 5.

(Most) important for the following: The influence of the propagator on any function of the

dynamical variables {x,v} has to be evaluated by taking into account the external field. Note

that, in fact, U(t) does not commute with Γ-space gradients ∂
∂v

, ∂
∂x

; in general, by applying the

principle of (10), one may show that 6 :

DVi
(t) ≡ U (0)(t)

∂

∂vi

U (0)(−t) = Ni
T(t)

∂

∂xi

+ N′
i
T
(t)

∂

∂vi

i = Σ, 1R (11)

3.3 The Generalized Master Equation

By assuming the interactions to be weak, the BBGKY hierarchy of equations is truncated to 2nd

order in λ; by neglecting initial correlations, f is found to obey a Non-Markovian Generalized

Master Equation (G.M.E.):

∂tf(x,v; t) = L0 f(x,v; t) + λ2 n
∫ t

0
dτ
∫

dx1 dv1 LI U (0)(τ) LΣ1 φeq(v1) f(x,v; t− τ) (12)

Remember that f = fα
1 (x,v), Fα′

1 (x1,v1) (= φ(v1) here) denote the distributions functions of

the test-particle and one (any) particle from the reservoir; n = N
V

is the particle density; finally

L0 ≡ L
(0)
Σ is the “free” Liouville operator defined previously (see (8)) and LI is the binary

interaction Liouville operator LΣ1 (cf. (9)).

5See about the propagator formalism in [4], [5].
6cf. [5]; note that DVi

(0) = ∂
∂vi

, DXi
(0) = ∂

∂xi
).
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4 A ‘quasi-Markovian’ approximation - the Θ−operator

The standard ‘markovianization’ method consists in substituting with the zeroth-order solution,

i.e. assuming that f(t−τ) ≈ e−L0τ f(t) ≡ U (0)(−τ) f(t), and then evaluating the kernel asymp-

totically i.e. taking the upper integration limit t to be ∞, one obtains the quasi-markovian

master equation:

∂tf(X; t) = L0f(X; t)

+ n
∫ ∞

0
dτ
∫
Γ
dX1 L′

Σ1 U (0)(τ) L′
Σ1 U (0)(−τ) φeq(X1) f(X; t)

= L0f(X) +
∫ ∞

0
dτ K(τ) f(X) ≡ Θ2(t) f (13)

4.1 “Quasi-markovian” Fokker-Planck equation

By explicitly recalling definitions (8), (9) and then using (10), (11) to evaluate the kernel in

(13), we obtain an equation of the form:

∂f

∂t
+ v

∂f

∂x
+

1

m
Fext

∂f

∂v
=

∂

∂v
[A(x,v)

∂

∂v
+ G(x,v)

∂

∂x
+ µ a(x,v)] f (14)

(f = f(x,v; t); µ ≡ m/mα′
1 ). After an algebraic manipulation, (14) takes the form of a 6-d

‘diffusion’ equation:

∂f

∂t
+ v

∂f

∂x
+

1

m
Fext

∂f

∂v
= − ∂

∂q
(FΘ f) +

∂

∂q

∂

∂q
: (DΘ f)

(14-bis)

where q ≡ (x,v). The 6x6 diffusion matrix is:

DΘ(x,v) =

 0 1
2
GT

1
2
G A

 (15)

and the 6-d 7 vector FΘ reads: FΘ = (0,F)T .

4.2 Coefficients

 A(x,v)

G(x,v)

 =
n

m2

∫ ∞

0
dτ
∫

dx1

∫
dv1 φeq(v1)

Fint(|x− x1|)⊗ Fint(|x(−τ)− x1(−τ)|)

 N′T(τ)

NT(τ)


7i.e. in a 3-d problem; in the general - d-dimensional - case, read ‘2d−’ (‘d−’) instead of ‘6−’ (‘3−’).
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=
n

m2

∫ ∞

0
dτ C(x,v; t, t− τ)

 N′T(τ)

NT(τ)


a(x,v) = − n

m2

∫ ∞

0
dτ
∫

dx1

∫
dv1 φeq(v1)

Fint(|x− x1|)⊗ Fint(|x(−τ)− x1(−τ)|)N′T
1
(τ)

∂φ(v1)

∂v1

= − n

m2

∫ ∞

0
dτ d(x,v; t, t− τ) (16)

Remark: Explicit appearance of the correlation function in the diffusion coefficients, explicit

dependence on the external force field through the N(t),N′(t) matrices and - implicitly - through

Fint.

4.3 The positivity issue

A kinetic equation should possess a number of properties; namely, it should preserve (i) the

reality, (ii) the normalization and (iii) the positivity of the (probability) distribution function.

Furthermore, (iv) an H-theorem should be satisfied.

In order for the probability distribution to be positive at any instant t under the action of

an evolution operator e.g. Θ(t), the diffusion matrix D should be positive definite, i.e. one

should have, for any a ∈ <6 :

(a,Da) = aTDa = aTDSY Ma ≥ 0

This criterion is definitely not satisfied here (note that detDΘ = −(detC)2 ≤ 0).

As a consequense,

the Quasi-Markovian F.P. equation (14) does not guarantee preservation of the positivity

of the probability d.f. f .

Comments:

1. The problem of positivity preservation has not been noticed in the past as the effect of

spatial inhomogeneity of the plasma on the collision term has always been neglected, through

one argument or another, or even plainly omitted 8.

2. In fact, inhomogeneity effects in the collision term have been considered in certain works,

yet the second (inhomogeneity) term in the RHS of eq.(14) has always been neglected - often

by assuming on physical grounds that it is negligible - or even plainly omitted.

3. The existence of the problem was however pointed out in [6] where the authors used

formal operator methods to show that the problem was due to the very construction of the

kinetic equation and actually suggested possible “therapy” (mainly for systems with a discrete

spectrum of the zeroth-order Liouville operator). That point of view is the formal basis of the

analysis that follows.

8This problem does a priori not arise in the homogeneous case.
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5 Towards a Markovian kinetic equation - the Φ−operator

In search for a correct markovian approximation, we have considered an evolution operator

which was first suggested by E.B.Davies in the theory of open quantum systems [1], [2] 9,

and was later re-formulated with respect to classical systems [6] 10. It essentially amounts to

considering the averaging operation:

At′ · = lim
T→∞

1

2T

∫ T

−T
dt′ U (0)(−t′) · U (0)(t′) (17)

which is applied to the rhs of eq.(14).

In the following, we shall explicitly construct (and compare) the Θ− and Φ− operators

(defined by (14) and (17) respectively) in two typical cases of interest.

6 Case of interest: 3d magnetized plasma

Let us consider the case of a charged particle moving in a uniform magnetic field against a

Maxwellian background plasma (cf. §2.3).

6.1 The homogeneous case

In the homogeneous case i.e. f = f(v; t), both operators coincide. The kinetic equation

obtained is of the form [3]:

∂f

∂t
+

e

mc
(v ×B)

∂f

∂v
=
[(

∂2

∂v2
x

+
∂2

∂v2
y

)[
D⊥(v)f

]
+

∂2

∂v2
z

[D‖(v)f ]

− ∂

∂vx

[
Fx(v) f

]
− ∂

∂vy

[
Fy(v) f

]
− ∂

∂vz

[
Fz(v) f

]
(18)

The explicit form of the coefficients in (18) is presented in [3], [8] (provided in the Appendix);

it will be omitted here. Eq. (18) is in agreement with earlier works [10].

Note that all coefficients are functions of v (actually of {v⊥, v‖}) only.

9The Φ−operator appears as ‘Davies’ device’ in the quantum case in [2]; however, curiously enough, the
classical case is not adressed therein.

10The implementation of this operator seems to be well defined for classical subsystems possessing a discrete
spectrum of eigenvalues of the corresponding Liouville operator. Yet, this is not the case for free particle motion
(cf. §2.1 above); indeed, coefficients obtained through the Φ− operator appear to be ill-defined. In the case
of helicoidal motion in a magnetic field (cf. §2.3), it was therefore expected (and indeed verified) that such a
problem would arise in the z-direction, as the magnetic field does not confine motion along z (the Lorentz force
yields no component along the field). In the following section §5.2, we shall therefore only consider distribution
functions which do not depend on z (actually looking into the plane ⊥ B).
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6.2 The general (inhomogeneous) case

In the general case, i.e. f = f(x,v; t), the change is dramatic; The Φ−operator yields the

equation:

∂f

∂t
+ v

∂f

∂x
+

e

mc
(v ×B)

∂f

∂v
=
[(

∂2

∂v2
x

+
∂2

∂v2
y

)[
D⊥(v)f

]
+

∂2

∂v2
z

[D‖(v)f ]

+2 s Ω−1
[

∂2

∂vx∂y
− ∂2

∂vy∂x

][
D⊥(v)f

]

+ Ω−2 [D
(XX)
⊥ (v)](

∂2

∂x2
+

∂2

∂y2
)f

− ∂

∂vx

[
Fx(v) f

]
− ∂

∂vy

[
Fy(v) f

]
− ∂

∂vz

[
Fz(v) f

]
+ s Ω−1Fy(v)

∂

∂x
f − s Ω−1Fx(v)

∂

∂y
f (19)

whereas in the case of the Θ− operator, typically of the form of (14), the 3rd (space-diffusion)

and 5th lines are missing, where the 2nd line (cross-V-X term) is strongly modified [3].

Notice that the collision term (RHS) in the above equation, as well as (18), is cylindrical

symmetric; this fact reflects the intrinsic symmetry of the problem, due to the external field.

If we switch the latter off, the well-known (spherical symmetric) Landau collision term [4] is

recovered (readily obtained by substituting from the expressions in §2.1 (free-motion limit) for

the dynamic matrices M(t),N(t) in the formulae for the coefficients in §4.2).

7 Note added in proof: a 1d lattice of linear oscillators

Let us consider the case of a chain of linear oscillators (cf. §2.1).

Equation (14) together with definitions in §4 lead to:

∂f

∂t
+ v

∂f

∂x
− ω2

0 x
∂f

∂v
=

∂2

∂v2

[
D

(Θ)
V V (v)f

]
+

∂2

∂v∂x

[
D

(Θ)
V X(v)f

]
− ∂

∂v

[
F (θ)

V (v) f
]

(20)

where f = f(x, v; t). It can be checked that the solution of equation (20) is ill-defined, since

the second-order diffusion matrix is not positive-definite (cf. §4.3) 11. It is interesting to see

that this problem does not arise in the homogeneous case (i.e. if f = f(v)), since the second

term in each side cancels and the diffusion coefficient DV V is a positive quantity.

By applying the Φ− operator, we obtain the equation:

∂f

∂t
+ v

∂f

∂x
− ω2

0 x
∂f

∂v
=

∂2

∂v2

[
D

(Φ)
V V (v)f

]
+

∂2

∂v∂x

[
D

(Φ)
V X(v)f

]
+

∂2

∂x2

[
D

(Φ)
XX(v)f

]
− ∂

∂v

[
F (Φ)

V (v) f
]
− ∂

∂x

[
F (Φ)

X (v) f
]

(21)

11This point can be illustrated quite elegantly - yet not so rigorously - by assuming for a while that all
coefficients are constant ∈ <+. Contrary to the correct FPE without cross-velocity-position derivative (i.e. for
DV X = 0) this equation has no solution. Indeed, as one may check analytically, the corresponding Green’s
function develops a singularity at some instant of time.
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Note the space-diffusion term in the RHS.

All coefficients in this paragraph have been explicitly computed and will be reported else-

where [7]; nevertheless, they were omitted here for brevity.

8 Conclusion

In conclusion, we have reported two (linear) kinetic evolution operators and presented the

corresponding Fokker-Planck-type kinetic equations, obtained to second order in the (weak)

interaction.

We have pointed out:

(i) that the widely used collision operator defined by (13), does not preserve the positivity of

the distribution function f(x,v; t) once one takes into account inhomogeneity effects

and

(ii) the necessity of explicitly taking into account the influence of the external force field (if such

a field exists) on particle trajectories when deriving analytic expressions for diffusion coefficients

related to a specific system.

Finally, the formalism has been applied in the case of magnetized plasma, where a new

collision term was presented and discussed.
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