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Abstract

We have considered the relaxation towards equilibrium of a charged test-particle
weakly interacting with a uniform magnetized plasma. A set of analytic expressions
are presented for relaxation times, depending of the form of the (long-range) inter-
particle interactions as well as the bulk equilibrium configuration. Considering a
uniform magnetic field, Debye interactions and a Maxwellian background, explicit
new expressions are computed. All quantities are functions of the strength of the
field B, the temperature T' and the t.p. velocity components [1].

A parametric study is envisaged in terms of these parameters [2]. The numerical
study presented here reveals the mechanism of influence of the magnetic field on
relaxation towards equilibrium, through an interplay between collision and gyration
length/time scales. This fact seems to be in agreement with arguments appearing
in [3], yet seems to contradict the ‘standard’nam description used in the past, where
the influence of the magnetic field on the collision term is either under-estimated

[4] or neglected [5] when discussing the physical - transport - properties of plasma.
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1 Introduction

In an earlier paper [1] we have undertaken a study of the dynamics of a charged test-
particle (t.p.) interacting with a magnetized background plasma in equilibrium. Start-
ing from first microscopic principles, a markovian Fokker-Planck-type kinetic equation
(F.P.E.) was derived and analytical expressions for the coefficients were obtained. Em-
phasis was made on the magnetic field dependence of the collision integral, as well as on
the effect of non space-uniformity of the t.p. distribution function f(x,v;t¢). This new
F.P.E. was thus suggested as a basis for the study of the influence of a magnetic field on
the kinetic properties of plasma in various parameter regions and regimes - (as compared,
that is, to the standard unmagnetized Landau description).

In the following, we summarize these results and then carry on by explicitly evaluating
the diffusion coefficients by considering a Maxwellian reservoir background state and a
Debye-type interaction law. The aim of this brief report is to present a set of exact com-
putable expressions for the diffusion coefficients and actually point out their dependence

on, among other parameters, the magnitude of the magnetic field.

2 The model

We consider a test-particle (t.p.) ¥ (of species ax = «; charge e} = e, mass m$§ = m)
surrounded by (and weakly coupled to) a homogeneous background plasma (the reservoir
‘R’: N particles, of species o/ € {a;} = {e,4,...}, j=1,2,...,N). The whole system is
subject to a uniform stationary magnetic field along Z. The equations of motion for the

t.p. read:
1
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where X = (x,v) = (x3,vs) and Xg = {X;} = (xj,v;) denote the coordinates of the
test- (X) and reservoir (R) particles respectively. The interaction force Fine(x, v; Xgr;t) =
—2 Y V(|x —x;|) (‘tagged’ by g), represents the sum of random interactions between %
and the heat bath (assumed in equilibrium); it is actually a stationary Gaussian process
with zero mean-value.

The zeroth-order (in g°) problem of motion yields the well-known (helicoidal) solution:

x(t) = x(0) + N(t) v(0) v(t) = N'(t) v(0)



where
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Q=0% = % is the gyro-frequency of particle j and s = 54, = \ZTZ| = +1 is the sign

of e; (the subscript will be omitted where ¥ is understood); finally N'(t) = dIN(t)/dt.

3 Statistical formulation - a kinetic equation

The test-particle’s reduced distribution function is f(x,v;t) = (I, p)r = [r, dXrp,
where p = p({X, Xgr}; ) denotes the total phase-space d.f., normalized to unity: [dX p =
1. By assuming interactions to be weak (g < 1), the BBGKY hierarchy of equations can
be truncated to 2nd order in g; neglecting initial correlations, f is thus found to obey
a Non-Markovian Master Equation. Following an approach developed in the past in the
theory of open statistical mechanical systems [3], the latter was shown in [1] to lead to a

Markovian Fokker-Planck-type equation of the form:
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where f = f(x,v;t) [4]. Note that all coefficients are functions of {v,,v}. Therefore,
by integrating over position {x}, one recovers a reduced F.P.E., describing the evolution
of floe(vit) = [dxf(x,v;t). This equation can be viewed as a ‘linearized’ version of a
kinetic equation which has appeared in earlier works [5], [6]. In velocity space cylindrical

coordinates it reads:
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Notice that, for a gyrotropic distribution function f = f(v.,v)) # f(6), the field appears

only in the coefficients in the rhs. Note the definitions of the dynamical friction vectors:

m 0D, m . 0D/ m . 0D
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4 Coefficients
The diffusion coefficients in (3) are defined by:
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where Cf‘i'i“’|}(vL,vl; Q) are elements of the (diagonal) force-correlation matrix C(r) =

(Fint(t) Fint(t — 7)) r; they are given by:
C{J_’”} = na/(27r)3 / dV]_ ng(;(vl) /dk ‘7]62 eiangm(T)vm 6_iang;1(T)vl’m k%LM} (6)

(a summation over n,m is understood) where v; (vy;), i = 1,2,3 denote the velocity
coordinates of the test- (R-) particle and Vj, stands for the Fourier transform of V (r);
remember that V = V(|r|) = V(r) implies V = V(|k|) = Vi. The dynamical friction

terms in (3) are given by:

B oD, D, B oD, 0D,
oD
Foo= (L+p) 5t (7)

(1 = mqy/mey) [1]. Note the explicit dependence on the magnetic field as well as on the
form of the reservoir equilibrium d.f. ¢.; = ¢eq(v1, v)) and the interaction potential V(r).

As a matter of fact, expressions (4), (5) correspond to the formulae which appear in
[1], [5]. In seek of an asymptotic form for the kernel (i.e. ¢ — oo) the authors therein
have chosen to straightforward carry out the time-integration first and thus obtain a set
of final expressions in terms of an infinite series of Bessel functions (as expected from
the cylindrical symmetry of the problem). That result is exact, yet quite delicate to
manipulate. Since the test-particle formulation permits a more analytically tractable

treatment, we have chosen not to adopt this procedure but rather try to advance the
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analytic computation as far as possible, still tracing the time dependence till the end,

instead.

4.1 Velocity integrals

The v;- integration in (5) can be carried out at this stage, once one assumes an analytic

form for ¢.,. Here, it will be explicitly taken to be a Maxwellian of the form:

¢Max 'Ul H ¢ i Oé —’U%,i/o—‘iy (8)
i=1.2,3
j , _ ' r 2 oore! . o
where d)éz) = (—zr;(i))lﬂ = ;q,; of = 2vy, = s Vi € {1,2,3} = {x,y,z};

Considering a single-species (i.e. o' = «) plasma and assuming oy = 09 = 0, 03 = O
y U3 IE

we obtain:
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Obviously, m (n) in {m,n} correspond to the upper (lower) i.e. L (]|) parts respectively.
Note that the trivial angle integration has also been carried out in (9), since neither V;
nor the rest of the integrand depends on the angle variable in Fourier space (as expressed

in polar coordinates).

4.2 Fourier integrals

In fact, relation (9) holds as it stands for any particular form of (long-range) central
interaction potential V(r). Let us now explicitly consider a Debye potential: V(r) =

Ap = kp' is the Debye length [6]; obviously k2 = k2 + k
D

267kD7‘
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The coefficients in (9) (actually functions of {v,,v),t; 01,0y, Q}) now become:
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Jo is a Bessel function of the first kind; the functions F' = Fy, (k1 ,v), 7; o)) are given

by:

T 7 —v?/o
F{J_’H} = i%mmlee I

+% eIk /4 Z [es’E“"T (1 J||IN€2L7'2/2 F SINQUHT) Erfc( \/_le + s—— ) (11)
s=+1,—1 \/ﬂ

the upper (lower) signs corresponding to the L (||)- parts respectively; &k, = (k% +k3)"/2.

Erfe(x) is the complementary error function:
Erfe(x)=1—Erf(z _1——/

Note that the integrand vanishes at infinity i.e. at k, — oo (and also at 7 — o0).
Futhermore, notice that there is no divergence at k; = 0, as the limit of the integrands at
ki — 0 is finite (and the same holds for 7 — 0). For the sake of clarity and briefness in
presentation, details concerning the (tedious but straightforward) derivation of (8) - (10)
has been omitted here; they will be reported soon in a more detailed account of our work

[7].

4.3 Non-dimensional expressions
4.3.1 Correlations

Notice that the above relations imply a set of expressions for the force correlation functions
CfLy (7), readily obtained by comparing (9), (10) to (5). The integration variable k|

7 2
therein can be re-scaled to the non-dimensional variable: z = I% =1+ Z—%)I/Z; relation
D



(6) thus becomes:
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F = F(¢(x,7),79)) is given by:
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(having set 0, = o) = o for simplicity). Remember that o, = 2kpT,/ms = 205, is

related to the thermal velocity (i.e. the temperature), Q, = e, B/m, ¢ is the cyclotron

(gyroscopic) frequency, kp = 42—6“;—“ is the Debye wave-number and w, , = (—a—4”§fa”a)1/ 2 s

the plasma (Langmuir) frequency (so w, = /o kp/2). Notice the interplay of collision

T,
and magnetic field scales through \ ~ Z2 = “thermal,
coll VAlfven

4.3.2 Diffusion coefficients

ikabc

As we saw, the final formulae for the diffusion coefficients can be simplified by rescaling
the integration variables k| (Fourier Wave—number) and 7 (time) therein to the non-
dimensional variables x = ’“ =(1 + )1/2 and 7' = Q7. The diffusion coefficients D, (¢)

are thus given by:
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function of the first kind; F' = F(¢(z,7'), 7)) is given by:

where all quantities in the rhs except Dy are non-dimensional; .Jy is a Bessel

Feljy=+vre +5 ; 1{(1 F 26" F 5207)) TN Erfe(é+ 7)) (15)
where
b= tATa A=A n (U equ)
Remember that kp = (%%)1/2 is the Debye wave-number and w,, = (%‘?—")1/2 is

the plasma (Langmuir) frequency. Notice the interplay of collision and gyration scales

through \ = 1}1’1; = ’;lef:“:

Therefore, for a given set of parameter values one only has to determine the values
of w,, 2 and then \; the above formulae for C(7) can then be evaluated as functions of
7 (or, rather, Q7), by carrying out the integration in z numerically; by integrating in 7,
one can then study the behaviour of the diffusion coefficients D, , (t) (defined as a
definite integral in 7, from 0 to ¢; cf.(4)) with respect for velocity components v, v and
the magnitude of the magnetic field (through the cyclotron frequency ). In the following

we shall limit ourselves to examining out the dependence of certain coefficients on the

magnitude of the magnetic field. A detailed numerical study will be reported elsewhere

[8]-

5 A numerical parametric study

We have chosen a set of typical values, i.e. a temperature of T'= 10 Kel’ and a particle
density of n = 10" em™ = 102 m™3, implying a plasma frequency w,. = 5.64 - 10'" s~
and a (gyro-)frequency of: Q. =1.76 10! x B s~! (B expressed in Tesla).

In figure 1, we have represented all coefficients against time ¢ (measured in cyclotron
periods), for B = 1T. The diffusion coefficients start from zero and soon evolve towards
a final asymptotic value which remains practically constant after a few gyration periods.
Notice the short “jumps” every cyclotron period, in fact a consequence of the thin ‘spikes’
in the correlations (cf. fig 1b). Notice the short peaks appearing every gyration period,
actually smoothed out very fast as time goes by. Eventually, particle interactions seem
to be completely decorrelated after a few gyration periods.

The velocity dependence of the coefficients qualitatively reproduces the unmagnetized

result [7]: see figure 2; the diffusion coefficients take lower values for faster particles.
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In figure 3a we have depicted D, versus A. Above A =~ 1 (i.e. for p; = rp or higher)
the field slightly enhances relaxation [6]: the higher its magnitude B, the higher the
value of D (7). We can see that the asymptotic value of the diffusion coefficient D(t)
(as t — oo) depends on the magnetic field: in fact, the higher the field, the higher the
final value D, (c0). Remember that the diffusion coefficients D, (¢) are related to the
inverse of the time needed for relaxation towards equilibrium [9]. Physically speaking,
this fact reflects particle confinement by the magnetic field, since particles ‘stick’ to their
helicoidal trajectory around the magnetic field lines and thus ‘feel’ each other for longer
periods of time.

The friction vector F| ~ 0D, /Ov, behaves in a similar way (fig. 3b).

However, their || — counterparts (fig. 3c, d) are practically time- (and field-) indepen-
dent.

We therefore see that the magnetic field slightly favours thermalization (i.e. relaxation
of the distribution function towards a maxwellian state). Once more, this seems to agree
with physical intuition (the more ‘confined’ the particles, the more they influence each
other and the more efficient collisions are towards relaxation). This fact seems to be
in agreement with arguments appearing in [11], yet seems to contradict the standard
description used in the past, where the influence of the magnetic field on the collision term
is either under-estimated [10] or neglected [6] when discussing the physical - transport -

properties of plasma.

6 Conclusions

In conclusion, we have reported new exact formulae for the diffusion coefficients in mag-
netized plasma. These formulae suggest an explicit dependence on both particle velocity
and physical parameters such as plasma temperature, density, and - the point we wanted
to focus upon - the magnitude of the magnetic field. A more extended study will be

reported soon [8].
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Figure 1: (a) Diffusion coefficients plotted against time ¢ for B = 17. The small ‘kinks’
at every gyration reflect the form of C'| (cf. fig. 1b).

(b) The perpendicular force correlation function C', (7;v ., v, B) (normalized over C'\ (T =
0)) as a function of time 7 (scaled over a cyclotron period 7.). In ascending order, the
magnitude of the magnetic field is set to B = 1,2,3 T respectively. Both velocity
components are taken equal to vy, = (T//m)Y/2. C| can be seen to decrease very fast in
time, still bearing a ‘tail’ of gradually smoothed out peaks every gyration period (actually

a signature of the magnetic field; see embedded figure 1b).
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Figure 2: The diffusion coefficient D, and the corresponding friction vector F,, plotted

against velocity v, for B = 1T (solid line) and B = 0 (dashed line).
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Figure 3: The perpendicular diffusion coefficient D, and the friction vector (norm) F
(top), and their || —counterparts (bottom) plotted against A (~ 1/B), at different instants
of t. D, slightly increases in time, yet only around A ~ 1 (i.e. p; = rp), above which it
practically remains constant. The field-dependence is smoothed out, as D, approaches

the asymptotic value for 2 — 0 (dash-dot line).
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Figure 4: D) comes out to be independent of the field and so does F.
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