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Abstract

We study the occurrence of modulational instability (MI) on waves (‘phonons’)
propagating in a single layer dusty plasma crystal (DP). This instability mecha-
nism, related to the intrinsic nonlinearities of the sheath electric field, is expected
to occur under certain conditions, possibly leading to the formation of localized
excitations. Explicit expressions for the instability rate and threshold are obtained

in terms of the dispersion laws of the system.
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1 Introduction

Modulational instability (MI) is a well-known mechanism of energy localization occurring
during wave propagation in nonlinear dispersive media. It has been thoroughly studied
in the past, mostly in one-dimensional solid state systems, where nonlinearities of the
substrate potential and/or particle coupling may be seen to destabilize waves and pos-
sibly lead to localized excitations (solitary waves). However, to our knowledge, no such
study has been carried out in the case of dusty plasma (DP) crystals [1]; such systems,
which are formed in strongly-coupled Coulomb systems containing charged dust grains,
have recently received increasing interest, due to their occurrence in real experimental
plasmas and the novel physics involved in their description [2].

In this framework, we have carried out a study of dusty plasma crystals. We study the
possibility and conditions of occurrence of modulational instability on waves (‘phonons’)
propagating in such one-dimensional plasma lattices [2]. The instability mechanism,
related to the intrinsic nonlinearity of the chain, is found to occur if certain conditions
are fulfilled. Explicit expressions for the dispersion laws of the system and the instability

rate are obtained and discussed.

2 Linear oscillations - Relation to previous results

It has been proved that DP crystals support low-frequency optical-mode-like oscillations
in both transverse and longitudinal directions [3], [4]. Focusing on the former and sum-
marizing previous results, let us recall that transverse motion in a crystal of charged

dust grains (mass M, charge @, lattice constant ry) obeys an equation of the form:
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where 0z, = 2, — 2y denotes the small displacement of the n—th grain around the

equilibrium position zg, in the transverse direction (z—), propagating in the longitudinal

(x—) direction; wy is the DP transverse oscillation ‘eigenfrequency’:
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resulting from the Debye interaction potential. Solving Poisson’s equation, one obtains

the electric field, which is due to the sheath potential and (in a more complete picture) to



the wake potential generated by supersonic ion flow towards the electrode [5]. The total
field E(2), actually a nonlinear function of z, can be developed around the equilibrium

position; the electric force therefore reads:
Fo(2) = Fo(20) + 70y 02 + 7(2) (62)° + v3) (02) + O((82)")

where all coefficients are appropriately defined via derivatives of the exact field form (see

e.g. (7), (11) in [4]). The zeroth-order term balances gravity at (and actually defines the

value of) z, while —y) =7 = ng is the effective width of the potential well.
Retaining only the linear contribution (i.e. &« = 3 = 0), and considering phonons of

the type: x, = A, expli (knry — wt)] + c.c., an optical-mode-like dispersion is obtained:
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(cf. (4) in [4]). We will not go into further details concerning the linear regime, since
it is covered in the references. Let us now see what happens if the nonlinear terms are

retained.

3 Nonlinear wave modulation

For simplicity, we shall limit ourselves to the continuum limit, considering wavelengths
A significantly larger than the inter-grain distance ry (i.e. krg < 1). With all the above

considerations, eq. (1) takes the form:
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where we set 0z = u(z, t) for simplicity; ¢y = wp 7 is a characteristic propagation velocity
related to the Debye potential (see (2)); the nonlinear coefficients «v, 3 are related to the
electric field: o = —v9)/M, B = —v3) /M. Remember that inter-particle interactions
are repulsive, hence the difference from the nonlinear Klein-Gordon equation used to
describe 1d oscillator chains. Phonons in this chain are stable only in the presence of
the electric field (i.e. for v # 0).

We now proceed by considering small-amplitude oscillations of the form:
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at each site. Assuming the existence of multiple scales in time and space, i.e. X,, = €"x,
T,=€¢"t (n=0,1,2,..), we develop the derivatives in (4) in powers of the smallness
parameter € and then collect the terms arising in successive orders. The equation thus
obtained in each order can be solved and substituted to the subsequent order, and so
forth. This reductive perturbation technique is a standard procedure in the study of
nonlinear wave propagation (e.g. hydrodynamics, nonlinear optics) often used in the
description of localized pulse propagation, prediction of instabilities etc. (see [6]).

The procedure outlined above leads to a solution of the type:
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where w obeys a dispersion law of the form:
w? = w? — o k? (6)

(cf. (3) linearized around k = 0).

3.1 A Nonlinear Schrodinger Equation

The slowly-varying amplitude A = A(X; — v,7}) moves at the group velocity v, =
dw/dk = —c% k/w; it is found to obey a Nonlinear Schridinger Equation (NLSE) of the

form:
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where the ‘slow’ variables { X, T'} are { X, T} respectively. The dispersion coefficient P
is related to the curvature of the phonon dispersion curve (6):
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and the nonlinearity coefficient () is related to electric field nonlinearities:
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Notice that P < 0, given the parabolic form of w(k); however, this is only true close to
k = 0 (continuum case): in the general (discrete) case (see (3)), P changes sign at a

critical value of k (the zero-dispersion point) in the first Brillouin zone.



4 Modulational instability

In a generic manner, a modulated wave whose amplitude obeys the NLS equation (7), is

be unstable to perturbations if

P-Q>0

To see this, one may first check that the NLSE accepts the monochromatic solution

(Stokes’ wave):

A(X,T) = Ay eQAPT 4 ¢

The standard (linear) stability analysis then shows that a linear perturbation of frequency

2 and wavenumber k will obey:
D2(k) = P? 2 (ﬁ _ 2% |A0|2> (10)
and is therefore expected to grow, for
k> ke = (Q/P)'? | Ao
at a rate attaining a maximu value of:
Omaz = @ |Ao|2

until the wave collapses. Nevertheless, if P-() < 0, this will never occur. This mechanism

is known as the Benjamin-Feir instability [6].

5 Localized excitations

It is known that the NLSE (7) supports pulse-shaped localized solutions (envelope soli-
tons) of the bright (PQ > 0) or dark (PQ < 0) type [7]. The former (continuum

breathers) are:
A = (2D/PQ)Y? sech[(2D/PQ)"? (X — v, T)] explive (X — v.T)/2P] + c.c.  (11)

where v, (v.) is the envelope (carrier) velocity and D = (v? — 2v,v.)/(4P?); the latter
(holes) are physically irrelevant and of no importance here.
We see that the occurrence of MI and the existence of localized excitations depend

on the same criterion, which needs to be thoroughly examined in terms of the electric
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Figure 1: Localized solutions of (7) given by (11) for two different parameter sets.
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potential ¢(z). Of course, for a more complete description, one has to take into account
transverse to longitudinal mode coupling (ignored in this simple model). Furthermore,
in the case of a double-layer crystal, the above picture is strongly modified. A second
transverse mode arises [5] and the nonlinear analysis presented here should take into

account layer coupling. Work in this direction is in progress and will be reported soon.
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