

Introduction

Modulational instability (MI), a well-known mechanism of energy localization dominating wave propagation in nonlinear dispersive media, has been widely investigated in the past, with respect to plasma electrostatic modes, e.g. ion-acoustic waves (IAW), and experiments have confirmed those studies [1]. However, little has been done as far as dusty plasma (DP) [2] is concerned, in this respect [3]. This study aims in partly filling this gap.

A. Dust-acoustic waves

The dust-acoustic wave (DAW) [2] is a very low frequency, *purely* DP mode (i.e. *absent* without dust), representing dust grain oscillations against a thermalized background of electrons and ions. It is characterized by a very low phase velocity: $v_{ph,DAW} \ll$

Substituting into (1), one obtains, successively (details in [4]): - the first harmonics of the perturbation:

$$n_1^{(1)} = s \frac{1+k^2}{\beta} \phi_1^{(1)} = \frac{1}{\gamma} p_1^{(1)} = \frac{1}{\omega} \mathbf{k} \cdot \mathbf{u}_1^{(1)} = \frac{k}{\omega \cos \theta} u_{1,x}^{(1)}, \quad (2)$$

- the compatibility condition (*DAW dispersion relation* [2]):

$$\nu^2 = \frac{\beta \, k^2}{k^2 + 1} + \gamma \, \sigma \, k^2 \,, \tag{3}$$

- the 2nd order contributions: $\mathbf{S}_{0,1,2}^{(2)}$: \rightarrow harmonic generation !!! - the *compatibility condition*, for n = 2, l = 1:

$$\lambda = v_g(k) = \frac{\partial \omega}{\partial k_x} = \omega'(k) \cos \theta = \frac{k}{\omega} \left[\frac{1}{(1+k^2)^2} + \gamma \sigma \right] \cos \theta;$$

 λ is therefore the *group velocity* in the modulation (x-) direction.

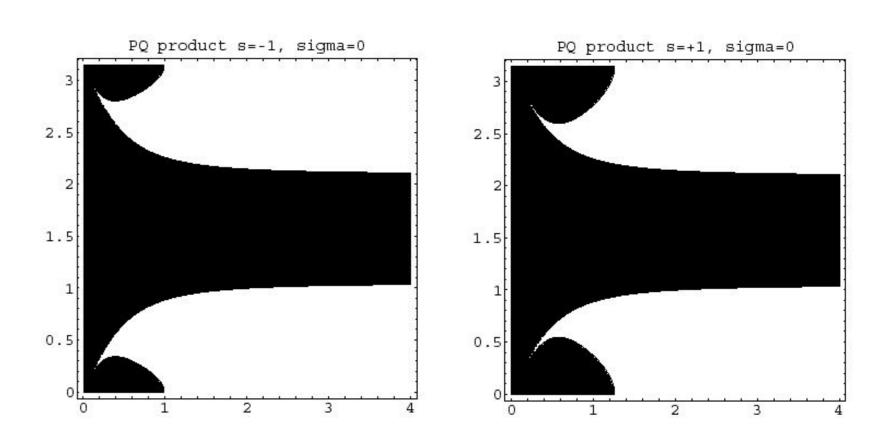


Figure 3. The DAW coefficient product PQ = 0 curve is represented against normalized wavenumber k/k_D (in abscissa) and angle θ (between 0 and π); the area in black (white) represents the region in the $(k - \theta)$ plane where PQis negative (positive); instability occurs for values inside the white area. Here

 $v_{ph,e}, v_{ph,i}$ and frequency below the dust plasma frequency $\omega_{p,D}$.

The model

We consider a *collisionless, unmagnetized, fully ionized dusty plasma*, consisting of electrons e (mass m, charge e), ions i (mass m_i , charge $q_i = +Z_i e$) and heavy dust grains d (mass m_d and charge $q_d = s Z_d e$ assumed constant; $s = sgn q_d = \pm 1$). The dust fluid moment-Poisson system of equations reads [4]:

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{u}) &= 0, \\ \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} &= -s \nabla \phi - \frac{\sigma}{n} \nabla p, \\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p &= -\gamma \, p \, \nabla \cdot \mathbf{u}; \end{aligned}$$

and

 $\nabla^2 \phi = \phi - \alpha \phi^2 + \alpha' \phi^3 - s \beta (n-1); \qquad (1)$ Eq. (1) is *Poisson's equation*: $\nabla^2 \Phi = -4\pi \sum q_\alpha n_\alpha$, close to the Maxwellian state assumed for both e and i, i.e. $n_e \approx n_{e,0} e^{e\Phi/k_B T_e}$, $n_i \approx n_{i,0} e^{-Z_i e\Phi/k_B T_i} \quad (T_\alpha: \text{ temperature, of species } \alpha = e, i).$ Overall neutrality is assumed at equilibrium:

 $n_{e,0} - Z_i n_{i,0} - s Z_d n_{d,0} = 0.$ We have defined the reduced (dimensionless) quantities: - dust density: $n = n_d/n_{d,0}$; - dust mean velocity: $\mathbf{u} = [m_d/(k_B T_e)]^{1/2} \mathbf{u}_d \equiv \mathbf{u}_{\mathbf{i}d}/v_d$; dust pressure: $n = n_d/n_0 = n_d/(n_{d,0} T_e)$;

- dust pressure: $p = p_d/p_0 = p_d/(n_{d,0}k_BT_e);$ - electric potential: $\phi = Z_d e \Phi/(k_BT_e);$

- $\gamma = (f+2)/f = C_P/C_V$ (for f degrees of freedom).

Derivation of the Nonlinear Schrödinger Equation

Proceeding to order $\sim \epsilon^3$, the equations for l = 1 yield an explicit compatibility condition in the form of the Nonlinear Schrödinger Equation

$$i\frac{\partial\psi}{\partial\tau} + P\frac{\partial^2\psi}{\partial\zeta^2} + Q|\psi|^2\psi = 0.$$

(4)

- Dispersion coefficient $P = \frac{1}{2} \frac{\partial^2 \omega}{\partial k_x^2} = \frac{1}{2} \left[\omega''(k) \cos \theta + \omega'(k) \frac{\sin^2 \theta}{k} \right];$ *P* is related to the *curvature* of the dispersion curve (3). - Nonlinearity coefficient $Q = \sum_{j=0}^{4} Q_j$, due to *carrier wave* self-interaction; $Q_{0/2}$ is due to the 0th/2nd order harmonics and Q_1 is related to the cubic term in (1). *P*, *Q* (too lengthy!) can be found in full detail in [4].

Stability analysis

Linearizing around the monochromatic (Stokes wave) solution of the NLSE (4): $\psi = \hat{\psi} e^{iQ|\hat{\psi}|^2\tau} + c.c.$ i.e. setting

 $\hat{\psi} = \hat{\psi}_0 + \epsilon \, \hat{\psi}_{1,0} \, e^{i(\hat{k}\zeta - \hat{\omega}\tau)}$

we obtain the *(perturbation)* dispersion relation:

$$\hat{\omega}^2 = P^2 \hat{k}^2 \left(\hat{k}^2 - 2\frac{Q}{P} |\hat{\psi}_{1,0}|^2 \right)$$

The wave will be *stable* $(\forall \hat{k})$ if the product PQ is negative. For *positive* PQ > 0, instability sets in for $\hat{k}_{cr} = \sqrt{2\frac{Q}{P}}|\hat{\psi}_{1,0}|$; the instability growth rate $\sigma = |Im\hat{\omega}(\hat{k})|$, reaches its maximum value $\sigma_{max} = |Q| |\hat{\psi}_{1,0}|^2$ for $\hat{k} = \hat{k}_{cr}/\sqrt{2}$. $\sigma = 0$ (cold dust). (a) negative dust (s = -1). (b) positive dust (s = +1).

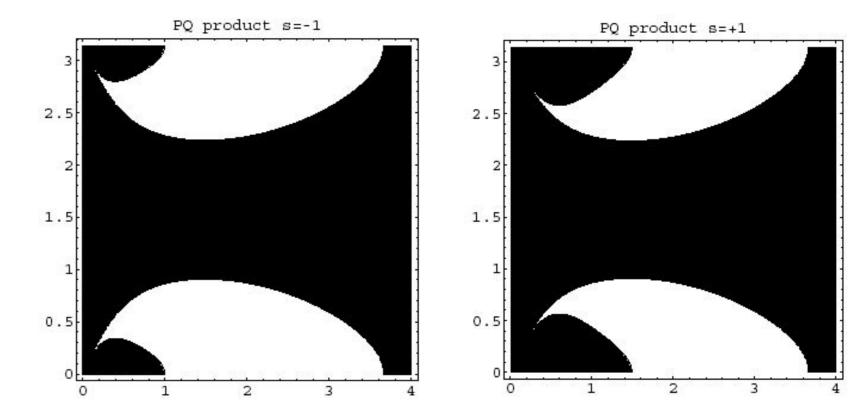


Figure 4. Same as Fig. 3, taking $\sigma = 1$ (hot dust DAW model).

B. Dust-ion acoustic waves (DIAW)

Dust-ion acoustic waves (DIAW) [2] are the DP analogue of the *ion-acoustic electrostatic wave* (IAW), [6], where inertial ions oscillate against a background of thermal electrons and massive dust grains. The DIAW is characterized by $v_{th,i} \ll v_{ph} \ll v_{th,e}$ and $\omega_{p,d} \ll \omega_{DIAW} \ll \omega_{p,i}$. The model equations are identical to (1) (setting $\alpha \rightarrow -\tilde{\alpha} \& s = 1$ therein [7, 8]), with the new definitions: - *ion density*: $n = n_i/n_{i,0}$; *ion pressure*: $p = p_i/(n_{i,0}k_BT_e)$; - *ion mean velocity*: $\mathbf{u} = [m_i/(k_BT_i)]^{1/2}\mathbf{u}_i \equiv \mathbf{u}_{id}/c_s$; - *electric potential*: $\phi = Z_i e\Phi/(k_BT_e)$; $\sigma = T_i/T_e$ Also, space and time are scaled over: - the electron Debye length $\lambda_{D,e} = (k_B T_e/4\pi n_{e,0}e^2)^{1/2}$ and - the characteristic time-scale $\lambda_{D,e}/c_s \equiv \omega_{p,e}^{-1} \frac{m_i}{m_e}$. - Now, the dimensionless parameters in (1) are $\tilde{\alpha} = 1/(2Z_i)$, $\alpha' = 1/(6Z_i^2)$ and $\beta = Z_i^2 n_{i,0}/n_{e,0} = Z_i/\mu$.

Also, space and time are scaled over: - the *DP effective Debye length* $\lambda_{D,eff} = (\lambda_{D,e}^{-2} + \lambda_{D,i}^{-2})^{-1/2}$ (where $\lambda_{D,\alpha} = (k_B T_{\alpha}/4\pi n_{\alpha,0} q_{\alpha}^2)^{1/2}$, $\alpha = e, i$) and - the inverse *DP plasma frequency* $\omega_{p,d}^{-1} = (4\pi n_{d,0} q_d^2/m_d)^{-1/2}$. - The dimensionless parameters appearing in (1) are

$$\alpha = \frac{1}{2Z_d} \frac{Z_i^3 (\frac{T_e}{T_i})^2 \frac{n_{i,0}}{n_{e,0}} - 1}{Z_i^2 \frac{T_e}{T_i} \frac{n_{i,0}}{n_{e,0}} + 1} , \qquad \alpha' = \frac{1}{6Z_d^2} \frac{Z_i^4 (\frac{T_e}{T_i})^3 \frac{n_{i,0}}{n_{e,0}} + 1}{Z_i^2 \frac{T_e}{T_i} \frac{n_{i,0}}{n_{e,0}} + 1} ,$$
and $\beta = (c_D/v_d)^2$, where $c_D = \lambda_{Deff} \omega_{p,d}$ is the DA speed [2].
Alternatively, one has: $\alpha \approx \frac{Z_i}{2Z_d} \frac{T_e}{T_i}, \quad \alpha' \approx \frac{Z_i^2}{6Z_d^2} \frac{T_e^2}{T_i^2} = \frac{2}{3} \alpha^2$ and
 $\beta \approx \frac{Z_d^2 n_{d,0} T_i}{Z_i^2 \frac{n_{i,0}}{T_i} T_e}$ for $\mu \ll Z_i \frac{T_e}{T_i}$;
we have defined the *typical dust parameters*

 $\delta = (Z_d n_{d,0}) / (Z_i n_{i,0}), \qquad \mu = n_{e,0} / (Z_i n_{i,0}) = 1 + s \,\delta \,.$

Retain: $0 \leq \mu < 1 \ (\mu > 1)$ corresponds to negative (positive) dust. Finally, $\sigma = p_0/(n_{d,0}k_BT_e)$ (= 1 here, for the above choice for p_0).

Multiple scales (reductive) perturbation method.

Let **S** be the state (column) vector $(n, \mathbf{u}, p, \phi)^T$; the *equilibrium state* is $\mathbf{S}^{(0)} = (1, \mathbf{0}, 1, 0)^T$. We shall consider small deviations by taking $(\epsilon \ll 1)$

 $\mathbf{S} = \mathbf{S}^{(0)} + \epsilon \, \mathbf{S}^{(1)} + \epsilon^2 \, \mathbf{S}^{(2)} + \dots = \mathbf{S}^{(0)} + \sum_{n=1}^{\infty} \epsilon^n \, \mathbf{S}^{(n)} \,.$

We define the stretched (slow) space and time variables [5]: $\zeta =$

Localized envelope excitations

 \rightarrow Bright-type solitons (pulses) for PQ > 0:

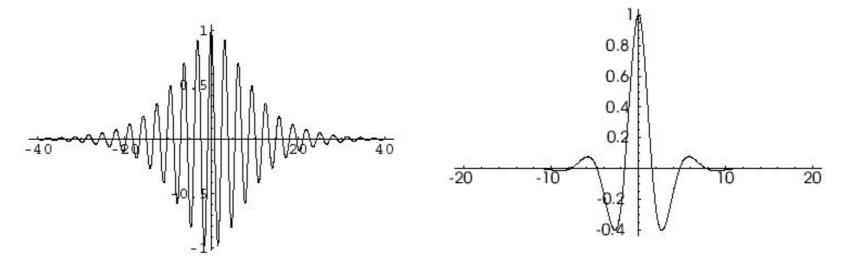


Figure 1. Bright type (pulse) soliton solution of the NLS equation, for two different parameter sets (PQ > 0).

\rightarrow Dark/grey type solitons (holes) for PQ < 0:

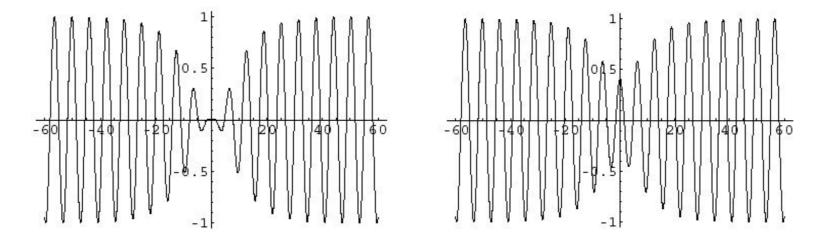


Figure 2. Soliton solutions of the NLS equation for PQ < 0 (holes); these excitations are of the: (a) dark type, (b) grey type. Notice that the amplitude never reaches zero in (b).

So, essentially:

- PQ > 0: Unstable linear wave, bright-type excitations;
- PQ<0: Stable linear wave, dark/grey-type excitations.

Numerical results

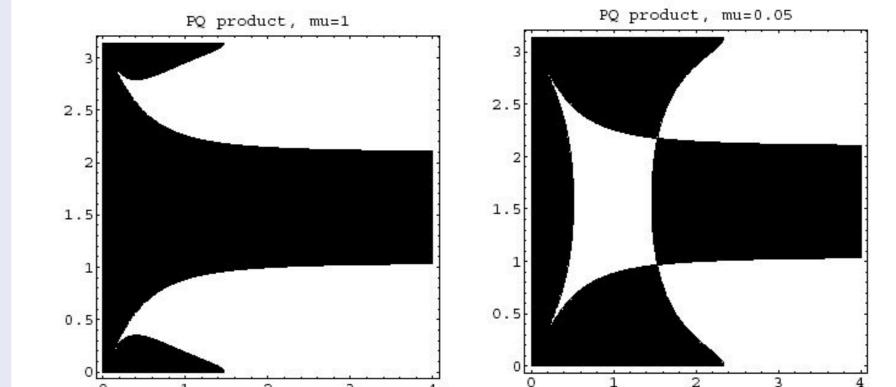


Figure 5. DIAW: similar to Figs. 3, 4, for two limit cases: (a) $\mu = 1$ i.e. in the dust-free(e-i plasma) limit; (b) $\mu = 0.05$ (high negative dust concentration): notice the generation of unstable regions for high θ . Here $\sigma = 0$ (cold ions).

PQ product, mu = 0.5, sigma = 0.05

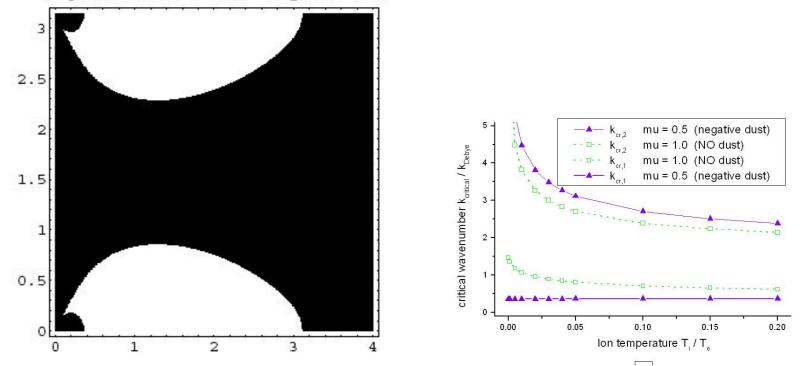
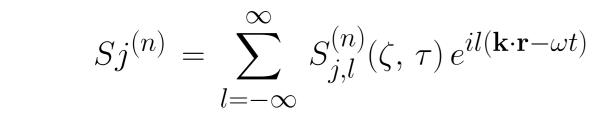


Figure 6. (a) Notice the effect of *negative* dust ($\delta = q_{d,0}/q_{i,0} = 0.5$ i.e. $\mu = 0.5$ here): lower $k_{cr,1}$ and finite temperature: lower $k_{cr,2}$ ($\sigma = 0.05$ here: warm ions); cf. Fig. 5a where $\mu = 1$, $\sigma = 0$. (b) The two critical wavenumbers $k_{cr,1}/k_{cr,2}$ are depicted against normalized ion temperature $\sigma = T_i/T_e$, for DP with $q_d < 0$.

References

[1] For a brief review, see the Introduction and exhaustive reference list in [4, 7].

 $\epsilon(x - \lambda t)$, $\tau = \epsilon^2 t$ ($\lambda \in \Re$); the *(fast) carrier phase* is $\theta_1 = \mathbf{k} \cdot \mathbf{r} - \omega t$ (*arbitrary propagation direction*), while the harmonic amplitudes vary *slowly along x*:



 $(S_{j,-l}^{(n)} = S_{j,l}^{(n)^*})$; wavenumber **k** is $(k_x, k_y) = (k \cos \theta, k \sin \theta)$.

→ Existence of two critical wavenumber $k_{cr,1,2}$, between which instability may occur (see Figs. 4). → Dramatic modulation obliqueness effect!: $k_{cr,1,2}$ depend on θ . → Important temperature effect on $k_{cr,1,2}$; see Fig. 4.

 \rightarrow Influence of dust concentration and sign on the stability profile and the soliton features.

 \rightarrow Small–angle modulated waves are stable for long wavelengths.

See figures 3, 4, where: $\alpha = 5 \cdot 10^{-3}$, $\alpha' \approx 2\alpha^2/3 \approx 1.6 \cdot 10^{-5}$ and $\beta \approx 100$, corresponding to $Z_d/Z_i = 10^3$ and $T_e/T_i = 10$.

[2] P. K. Shukla & A. A. Mamun, *Introduction to Dusty Plasma Physics*, Institute of Physics Publishing (2002).

[3] M. R. Amin, G. E. Morfill and P. K. Shukla, Phys. Rev. E 58, 6517 (1998).

[4] I.Kourakis and P. K. Shukla, "Oblique amplitude modulation of dust-acoustic plasma waves", Journal of Mathematical Physics, submitted (2003).

[5] T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969); N. Asano, T. Taniuti and N. Yajima, J. Math. Phys. 10, 2020 (1969).

[6] N. A. Krall and A. W. Trivelpiece, *Principles of plasma physics*, McGraw - Hill (1973).

[7] I.Kourakis and P. K. Shukla, "Modulational instability and localized excitations of dustion acoustic waves", Physics of Plasmas **10** (9), 3459 – 3470 (2003).

[8] I.Kourakis and P. K. Shukla, "Finite ion temperature effects on the stability and envelope excitations of dust-ion acoustic waves", European Journal of Physics B (submitted).