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Introduction

We present a comprehensive investigation of inter-grain interaction
in the presence of ion flow in dusty plasmas (DP) [1]. Specifically,
we exploit the results of Ref. [2] to provide detailed information
regarding the role of ion flow on short range Debye-Hückel and long
range attractive potentials around dust grains that are levitated at
the same height above a negative electrode. It is shown that both
short and long range potentials are modified by the ion flow. We
then carry out a study of the stability of dust oscillations in a
horizontal arrangement of dust grains. It is found that dust lattice
modes may become unstable due to ion flow towards the electrode.

Figure 1. Horizontal dust layer (heuristic picture).

Longitudinal dust-lattice (LDL) modes: prerequisites

Let us consider dust lattice oscillations in a plasma whose con-
stituents are electrons, streaming ions, and an ensemble of nega-
tively charged dust grains. The longitudinal motion of charged
dust grains (mass M and charge Q, both assumed constant for
simplicity) in a DP crystal (lattice constant r0) obeys [1, 3, 4, 5, 6]:
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- Unm(rnm) ≡ Qφ(x) is a binary interaction potential function
related to the electrostatic potential φ(x) around the m−th grain;
- E(x) = −∂φ(x)/∂x is the electric field;
- rnm = xn − xm: distance between n−th and m−th grains.
- ν is the damping rate due to dust-neutral collisions.
A 1d DP layer is considered here, yet generalization to a 2d grid is
straightforward. Retaining only first neighbor interactions [7] and

considering small (linear) displacements δxn = xn − x
(0)
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[1, 3, 4, 8]. The LDL oscillation ‘eigenfrequency’ ω0,L is given by:
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φ(r) is often assumed to be the Debye-Hückel potential
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where kD = λ−1
D is the inverse Debye radius [9], so ω0,L is [1, 3]
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The associated linear dispersion relation reads:
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which reduces to

ω (ω + i ν) ≈ ω2
0,Lr2

0 k2 ≡ c2
Lk2 (6)

in the continuum (long-wavelength) limit, i.e. for λ� r0. We see
that stability of the LDLW is ensured only if the RHS is positive,
i.e. if (and only if) ω0,L is real (viz. ω2

0,L > 0). Therefore,

stability depends on the interaction potential φ(r) via Eq. (3).

A more sophisticated interaction potential

In full rigor, one should take into account the wake potential gener-
ated by ion flow towards the electrode [2, 10]. It has been recently
shown from first physical principles [2] that the electrostatic inter-
action potential φ(r) = QkD W (r) around a charged dust grain in
the vicinity of a conducting wall penetrated by in-flowing ions may
strongly deviate from the simple Debye-Hückel picture. In specific,
the (normalized) potential W (r; z0) = W (ρ; a) was found in Ref.
[2] to be:

W (ρ) = 2

∫ ∞

0
dq⊥ q⊥ J0(q⊥ρ) g(k), (7)

where g(k) = (kD/4π) Gk⊥(z0) is the (dimensionless) function:

g(k) =
e−κa

κ2 + q2

[
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]
(8)

and J0(x) is a Bessel function of the first kind; also,
- r ≡ ρ λD: inter – grain distance;
- z0 ≡ a λD: levitation height (above electrode);
- u ≡Mωp,iλD: velocity of ion flow (M : Mach number );
- q⊥ = kλD: wavenumber (normalized).
Finally, q and κ, related to the poles of the dielectric function, are:
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The 1st term in RHS (8) is related to the Debye-Hückel potential
(distorted by the ion flow), while the 2nd term accounts for the
wake potential generated downstream by grains. For vanishing ion
velocity (ui → 0) and infinite electrode-to-grain distance (a→∞),
the Fourier transform of the Debye potential is recovered.

Numerical study of the interaction potential

Figure 2. The normalized interaction potential W is depicted against the (nor-

malized) intergrain distance kDr, for a = 2.7. (a) Subsonic ion flow (M < 1).

(b) Supersonic ion flow (M > 1).

Figure 3. The interaction potential W is depicted against the (normalized)

intergrain distance ρ = kD r and the Mach number M , for a = 2.7. (a) Subsonic

ion flow (0 < M < 1). (b) Supersonic ion flow (1 < M < 10). We see that the

character (attractive/repulsive) of the potential w at a given distance ρ = kD r

may depend on the subsonic ion flow.

Figure 4. The interaction potential W is depicted against the (normalized)

levitation height a (1 < a < 5 here) and the Mach number M , for an intergrain

distance value of ρ = kD r = 1. (a) Subsonic ion flow (0 < M < 1). (b)

Supersonic ion flow (1 < M < 10). The character (attractive/repulsive) of the

potential w at a given height may depend on the (subsonic) ion velocity, and

vice versa.

Figure 5. The potential W is represented against the (normalized) levitation

height a (0 < a < 10) and the intergrain distance ρ = kD r (0 < ρ < 5) for

a fixed Mach number M , equal to (a) M = 0.5, (b) M = 1.5. Notice that a

given distance may correspond to stable or unstable oscillations, depending on

the levitation height.

Dispersion relation for a 2d grid: stability analysis

Considering a simple two-dimensional dust gas (grid), it was shown
[2] that the oscillation frequency ω is:

ω2 ≈ Q2

Mλ3
D

g(k) k2 . (10)

Therefore, the sign of ω2 may be investigated by a numerical anal-
ysis of the (sign of the) RHS (10). One finds that dust grain
oscillations subject to a subsonic ion flow may become unstable
for certain (combinations of) M and a.

Figure 6. (a) The dust grid dispersion curve, i.e. the oscillation frequency

squared ω2, as given by (8) and (10), is represented against the wavenumber

k/kD and the Mach number M (0 < M < 1: subsonic case). (b) As in (a),

for the supersonic case (M > 1). The levitation height was chosen equal to

a = 2.7. Two distinct unstable regions (ω2 < 0) appear in (a), as the ion

velocity increases. The supersonic case is globally stable.

LDL mode in a 1d crystal: stability analysis

In a similar manner, one may derive the characteristic frequency of
LDL oscillations ω2

0,L in Eqs. (2), (5), from (3).

One finds that ω2
0,L is related to the potential (Fourier) transform

Gk⊥ = (4π/kD)g(k) via the expression
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[11] i.e.
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for a one-dimensional lattice (δ = 1). See that ω0,L =
ω0,L(r0, z0) ≡ ω0,L(ρ0, a) i.e. depends on the levitation height
a = kDz0 and the lattice constant ρ0 = r0/λD (normalized).
We may now evaluate the RHS(12) numerically.

As intuitively expected, the stability of the chain for a given value of
ρ depends on the velocity ui of the ion flow, so that an increase in
ui may result in unstable oscillations and melting of the chain.
Inversely, stability for given ui may be ensured for a certain value
of ρ and excluded for another; see Fig. 7.

Figure 7. (a) The characteristic (square) lattice frequency ω2
0,L, given by (12), is

depicted against the Mach number M for fixed (levitation height) a and different

values of the (normalized) lattice constant ρ0 = r0/λD. (b) ω2
0,L vs. lattice

constant ρ0 = r0/λD for fixed (levitation height) a and different values of the

the Mach number M .

Stable configurations correspond to lattice constants of the order of
a Debye length λD, in agreement with known experimental results.
Note the dependence on the levitation height a (for given ui, ρ) and
the lattice constant ρ. In fact, different values of ρ -yet possibly
close ones- may present a completely different stability profile; cf.
Figs. 8a, b.

Figure 8. ω2
0,L is depicted against the (normalized) levitation height) a for dif-

ferent values of the the Mach number M and lattice constant: (a) ρ0 = 1.0; (b)

ρ0 = 1.1. We see that the latter is always stable, while the former is only stable

at specific height values a.

In conclusion, both Debye-Hückel repulsive and ion wake attractive
potentials are significantly modified by the ion flow.
Melting may occur
- by modifying the ion flow and/or
- when strong intergrain distance variations occur (possibly related
to wide amplitude longitudinal oscillations due to nonlinear effects),
or
- if the equilibrium position (related to the linear term in the sheath
field) is modified.
These remarks remain valid in both sub- (M < 1) and supersonic
(M > 1) ion flow cases (in contrast with the Ignatov grid model -
see above - [2], where stability was prescribed for M > 1 only).

These results may help to elucidate the melting of dust crystals in
the sheath region, observed in experiments.
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