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Outline
A. Introduction

(i) Dusty Plasma (DP): a rapid overview of notions and ideas;
(ii) Prerequisites: Linear waves in 1d dust crystals;
(iii) Nonlinearity in 1d DP crystals: Origin and modeling.

B. Nonlinear effects on transverse dust-lattice waves (TDLWs):
amplitude modulation, transverse envelope structures.

C. Nonlinear effects on longitudinal dust-lattice waves (LDLWs):
modulation, longitudinal envelope excitations.

D. Longitudinal localized excitations : relation to soliton theories.

E. 1d Discrete Breathers (Intrinsic Localized Modes) : → poster.

F. Conclusions.
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A. Intro. (i) DP – Dusty Plasmas (or Complex Plasmas ):
definition and characteristics

❏ Ingredients:
– electrons e− (charge −e, mass me),
– ions i+ (charge +Zie, mass mi), and
– charged micro-particles ≡ dust grains d (most often d−):

charge Q = ±Zde ∼ ±(103 − 104) e,
mass M ∼ 109mp ∼ 1013me,
radius r ∼ 10−2 µm up to 102 µm.
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Origin: Where does the dust come from?
❏ Space: cosmic debris (silicates, graphite, amorphous carbon),

comet dust, man-made pollution (Shuttle exhaust, satellite
remnants), ...

❏ Atmosphere: extraterrestrial dust (meteorites): ≥ 2 · 104 tons a
year (!)(*), atmospheric pollution, chemical aerosols, ...

❏ Fusion reactors: plasma-surface interaction, carbonaceous
particulates resulting from wall erosion-created debris
(graphite, CFCs: Carbon Fiber Composites, ...)

❏ Laboratory: (man-injected) melamine–formaldehyde
particulates (**) injected in rf or dc discharges; 3d (= multiple
2d layers) or 1d (by appropriate experimental setting) crystals.

Sources: [P. K. Shukla & A. Mamun 2002], (*) [DeAngelis 1992], (**) [G. E. Morfill et al. 1998]
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Some unique features of the Physics of Dusty Plasmas:

❏ Complex plasmas are overall charge neutral ; most (sometimes
all !) of the negative charge resides on the microparticles;

❏ The microparticles can be dynamically dominant : mass
density ≈ 102 times higher than the neutral gas density and
≈ 106 times higher than the ion density !

❏ Studies in slow motion are possible due to high M i.e. low
Q/M ratio (e.g. dust plasma frequency : ωp,d ≈ 10− 100 Hz);

❏ The (large) microparticles can be visualised individually and
studied at the kinetic level (with a digital camera!) → video;

❏ Dust charge (Q 6= const.) is now a dynamical variable,
associated to a new collisionless damping mechanism;
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(...continued) More “heretical” features are:
❏ Important gravitational (compared to the electrostatic)

interaction effects; gravito-plasma physics;
gravito-electrodynamics; Jeans-type (gravitational) plasma
instabilities etc. [Verheest PPCF 41 A445, 1999]

❏ Complex plasmas can be strongly coupled and exist in “liquid”
(1 < Γ < 170) and “crystalline” (Γ > 170 [IKEZI 1986]) states,
depending on the value of the effective coupling (plasma)
parameter Γ;

Γeff =
< Epotential >

< Ekinetic >
∼ Q2

r T
e−r/λD

(r: inter-particle distance, T : temperature, λD: Debye length).

Cf.: Lecture given by Tito Mendonça (Sat. July 17, 2004).
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Dust laboratory experiments on Earth:

www.tp4.rub.de/ ∼ioannis/conf/2004-Complexity-oral.pdf Complexity in Science and Society (Olympia, Greece), 2004



I. Kourakis, Theory of nonlinear excitations in dusty plasma crystals 7

Earth experiments are
subject to gravity:
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Earth experiments are
subject to gravity:

thus ...: Dust experiments in ISS (International Space Station)

(Online data from: Max Planck Institüt - CIPS).
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Focusing on 1d DP crystals: known linear modes.

❏ Longitudinal Dust Lattice (LDL) mode:
– Horizontal oscillations (∼ x̂): cf. phonons in atomic chains;
– Acoustic mode: ω(k = 0) = 0;
– Restoring force provided by electrostatic interactions.

❏ Transverse Dust Lattice (TDL) mode:
– Vertical oscillations (∼ ẑ);
– Optical mode:
ω(k = 0) = ωg 6= 0
(center of mass motion);

– Single grain vibrations (propagating ∼ x̂ for k 6= 0):
Restoring force provided by the sheath electric potential
(and interactions).

❏ Transverse (∼ ŷ, in-plane, optical) d.o.f. suppressed.
∗ Figure from: S. Takamura et al., Phys. Plasmas 8, 1886 (2001).
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Model Hamiltonian:

H =
∑

n

1
2
M

(
drn

dt

)2

+
∑
m6=n

Uint(rnm) + Φext(rn)

where:

– Kinetic Energy (1st term);

– Uint(rnm) is the (binary) interaction potential energy ;

– Φext(rn) accounts for ‘external’ force fields:
may account for confinement potentials and/or sheath electric
forces, i.e. Fsheath(z) = −∂Φ

∂z .

Q.: Nonlinearity: Origin: where from ?
Effect: which consequence(s) ?
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Nonlinearity: Where does it come from?

❏ (i) Interactions between grains: Electrostatic character
(e.g. repulsive, Debye), long-range (yet charge screened:
r0/λD ≈ 1), anharmonic; typically: UDebye(r) = q2

r exp (−r/λD).

Expanding Upot(rnm) near equilibrium:
∆xn = xn − xn−m = mr0, ∆zn = zn − zn−m = 0,
one obtains:

Unm(r) ≈ 1
2
Mω2

L,0(∆xn)2 +
1
2
Mω2

T,0(∆zn)2

+
1
3
u30(∆xn)3 +

1
4
u40(∆xn)4 + ...+

1
4
u04(∆zn)4 + ...

+
1
2
u12(∆xn)(∆zn)2 +

1
4
u22(∆xn)2(∆zn)2 + ...
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Nonlinearity: Where from? (continued ...)

❏ (ii) Mode coupling also induces non linearity:
anisotropic motion, not confined along one of the main axes
(∼ x̂, ẑ).

[cf. A. Ivlev et al., PRE 68, 066402 (2003); I. Kourakis & P. K. Shukla, Phys. Scr. (2004)]
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Nonlinearity: Where from? (continued ...)

❏ (iii) Sheath environment: anharmonic vertical potential:

Φ(z) ≈ Φ(z0) +
1
2
Mω2

g(δzn)2 +
1
3
Mα (δzn)3 +

1
4
Mβ (δzn)4 + ...

cf. experiments [Ivlev et al., PRL 85, 4060 (2000); Zafiu et al., PRE 63 066403 (2001)];
δzn = zn− z(0); α, β, ωg are defined via E(z), [B(z)]† and Q(z);
(in fact, functions of n and P ) [† V. Yaroshenko et al., NJP 2003; PRE 2004]

Source: Sorasio et al. (2002).
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Part 1: Transverse oscillations
The vertical n−th grain displacement δzn = zn − z(0) obeys

d2(δzn)
dt2

+ν
d(δzn)
dt

+ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn = 0
(1)

* ωT,0 =
[
−qU ′(r0)/(Mr0)

]1/2 = ω2
DL exp(−κ) (1 + κ)/κ3 (†)

(†) (for Debye interactions); κ = r0/λD is the lattice parameter ;

* ωDL = [q2/(Mλ3
D)]1/2; λD is the Debye length;
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Part 1: Transverse oscillations
The vertical n−th grain displacement δzn = zn − z(0) obeys

d2(δzn)
dt2

+ν
d(δzn)
dt

+ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn = 0 (2)

* Set ν = 0 in the following;

* Continuum analogue: δzn(t) → u(x, t)

∂2u

∂t2
+ c2T

∂2u

∂x2
+ ω2

g u = 0

where cT = ωT,0 r0 is the transverse “sound” velocity.
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Part 1: Transverse oscillations
The vertical n−th grain displacement δzn = zn − z(0) obeys

d2(δzn)
dt2

+ν
d(δzn)
dt

+ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn = 0 (3)

* Set ν = 0 in the following;

* Optical dispersion relation
(backward wave, vg < 0) †:
ω2 = ω2

g − 4ω2
T,0 sin2

(
kr0/2

)

† Cf. experiments: T. Misawa et al., PRL 86, 1219 (2001); B. Liu et al., PRL 91, 255003 (2003).
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What if nonlinearity is taken into account?

d2δzn

dt2
+ν

d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn

+α (δzn)2 + β (δzn)3 = 0 . (4)
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What if nonlinearity is taken into account?

d2δzn

dt2
+ν

d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn

+α (δzn)2 + β (δzn)3 = 0 . (5)

* Intermezzo: The mechanism of wave amplitude modulation:
The amplitude of a harmonic wave may vary in space and time:

→
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What if nonlinearity is taken into account?

d2δzn

dt2
+ν

d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn

+α (δzn)2 + β (δzn)3 = 0 . (6)

* Intermezzo: The mechanism of wave amplitude modulation:
The amplitude of a harmonic wave may vary in space and time:

→
This modulation (due to nonlinearity) may be strong enough to
lead to wave collapse or formation of envelope solitons:

→ ?
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Large amplitude oscillations - envelope structures

A reductive perturbation (multiple scale) technique, viz.
t→ {t0, t1 = εt, t2 = ε2t, ... }, x→ {x0, x1 = εx, x2 = ε2x, ...}
yields (ε� 1; damping omitted):

δzn ≈ ε (Aeiφn + c.c.) + ε2α

[
−2|A|2

ω2
g

+
(

A2

3ω2
g
e2iφn + c.c.

)]
+ ...

(φn = nkr0 − ωt);
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Large amplitude oscillations - envelope structures
A reductive perturbation (multiple scale) technique, viz.
t→ {t0, t1 = εt, t2 = ε2t, ... }, x→ {x0, x1 = εx, x2 = ε2x, ...}
yields (ε� 1; damping omitted):

δzn ≈ ε (Aeiφn + c.c.) + ε2α

[
−2|A|2

ω2
g

+
(

A2

3ω2
g
e2iφn + c.c.

)]
+ ...

(φn = nkr0 − ωt); the harmonic amplitude A(X,T ):
– depends on the slow variables {X,T} = {ε(x− vgt), ε2t} ;
– obeys the nonlinear Schrödinger equation (NLSE):

i
∂A

∂T
+ P

∂2A

∂X2
+Q |A|2A = 0 , (7)

– Dispersion coefficient: P = ω′′(k)/2 → see dispersion relation;
– Nonlinearity coefficient: Q =

[
10α2/(3ω2

g)− 3β
]
/2ω.

Known properties of the NLS Eq.: Cf. talk by Yannis Kominis, tomorrow.

[I. Kourakis & P. K. Shukla, Phys. Plasmas, 11, 2322 (2004); also PoP, in press (Aug. 2004).]
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Modulational stability analysis & envelope structures
❏ PQ > 0: Modulational instability of the carrier, bright solitons:

→ TDLWs: possible for short wavelengths i.e. kcr < k < π/r0.

Rem.: Q > 0 for all known experimental values of α, β.
[Ivlev et al., PRL 85, 4060 (2000); Zafiu et al., PRE 63 066403 (2001)]

Source: G. Sorasio et al. (2002).
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Modulational stability analysis & envelope structures

❏ PQ > 0: Modulational instability of the carrier, bright solitons:

→ TDLWs: possible for short wavelengths i.e. kcr < k < π/r0.
❏ PQ < 0: Carrier wave is stable, dark/grey solitons:

→ TDLWs: possible for long wavelengths i.e. k < kcr.
Rem.: Q > 0 for all known experimental values of α, β
[Ivlev et al., PRL 85, 4060 (2000); Zafiu et al., PRE 63 066403 (2001)] (end of Part 1).
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Part 2: Longitudinal excitations (linear).

The nonlinear equation of longitudinal motion reads:

d2(δxn)
dt2

+ν
d(δxn)
dt

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

– δxn = xn − nr0: longitudinal dust grain displacements

– Acoustic dispersion relation: ω2 = 4ω2
L,0 sin2

(
kr0/2

)
≡ ω2

L(k)

– ω2
0,L = U ′′(r0)/M) = 2ω2

DL exp(−κ) (1 + κ+ κ2/2)/κ3 (∗)

(∗) for Debye interactions; Rem.: ωDL = [q2/(Mλ3
D)]1/2.
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Part 2: Longitudinal excitations (linear).

The nonlinear equation of longitudinal motion reads:

d2(δxn)
dt2

+ν
d(δxn)
dt

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

– δxn = xn − nr0: longitudinal dust grain displacements

– Acoustic dispersion relation: ω2 = 4ω2
L,0 sin2

(
kr0/2

)
≡ ω2

L(k)
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Part 2: Longitudinal excitations (nonlinear ).

The nonlinear equation of longitudinal motion reads:

d2(δxn)
dt2

+ν
d(δxn)
dt

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

−a20

[
(δxn+1 − δxn)2 − (δxn − δxn−1)2

]
+ a30

[
(δxn+1 − δxn)3 − (δxn − δxn−1)3

]
(8)

– δxn = xn − nr0: longitudinal dust grain displacements

– Cf. Fermi-Pasta-Ulam (FPU) problem∗:
anharmonic spring chain model.

∗ cf. talk by S. Flach (today).
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Longitudinal envelope structures.
The reductive perturbation technique (cf. above) now yields:

δxn ≈ ε
[
u

(1)
0 + (u(1)

1 eiφn + c.c.)
]
+ ε2 (u(2)

2 e2iφn + c.c.) + ... ,

[Harmonic generation; Cf. experiments: K. Avinash PoP 2004].
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Longitudinal envelope structures.
The reductive perturbation technique (cf. above) now yields:

δxn ≈ ε
[
u

(1)
0 + (u(1)

1 eiφn + c.c.)
]
+ ε2 (u(2)

2 e2iφn + c.c.) + ... ,

[Harmonic generation; Cf. experiments: K. Avinash PoP 2004].

where the amplitudes now obey the coupled equations:

i
∂u

(1)
1

∂T
+ PL

∂2u
(1)
1

∂X2
+ Q0 |u(1)

1 |2u(1)
1 +

p0k
2

2ωL
u

(1)
1

∂u
(1)
0

∂X
= 0 ,

∂2u
(1)
0

∂X2
= − p0k

2

v2
g,L − c2L

∂

∂X
|u(1)

1 |2 ≡ R(k)
∂

∂X
|u(1)

1 |2

– Q0 = −k2

2ω

(
q0 k

2 + 2p2
0

c2
L

r2
0

)
;

– vg,L = ωL
′(k); {X,T} are slow variables (as above);

– p0 = −r30U ′′′(r0)/M ≡ 2a20r
3
0 , q0 = U ′′′′(r0)r40/(2M) ≡ 3a30r

4
0.

– R(k) > 0, since ∀ k vg,L < ωL,0 r0 ≡ cL (sound velocity).
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Asymmetric longitudinal envelope structures.

– The system of Eqs. for u(1)
1 , u(1)

0 may be combined into a
closed (NLSE) equation (for A = u

(1)
1 , here);

i
∂A

∂T
+ P

∂2A

∂X2
+Q |A|2A = 0

– P = PL = ω′′L(k)/2 < 0;
– Q > 0 (< 0) prescribes stability (instability) at low (high) k.
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Asymmetric longitudinal envelope structures.

– The system of Eqs. for u(1)
1 , u(1)

0 may be combined into a
closed (NLSE) equation (for A = u

(1)
1 , here);

i
∂A

∂T
+ P

∂2A

∂X2
+Q |A|2A = 0

– P = PL = ω′′L(k)/2 < 0;
– Q > 0 (< 0) prescribes stability (instability) at low (high) k.
– Envelope excitations are now asymmetric:

(at high k)
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Asymmetric longitudinal envelope structures.

– The system of Eqs. for u(1)
1 , u(1)

0 may be combined into a closed
(NLSE) equation, which yields asymmetric envelope solutions.
– P = PL = ω′′L(k)/2 < 0;
– Q > 0 (< 0) prescribes stability (instability) at low (high) k.

(at high k)

(at low k)

[I. Kourakis & P. K. Shukla, Phys. Plasmas, 11, 1384 (2004).] (end of Part 2).
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Part 3: Longitudinal soliton formalism.

Q.: A link to soliton theories: the Korteweg-deVries Equation.

– Continuum approximation, viz. δxn(t) → u(x, t).

– “Standard” description: keeping lowest order nonlinearity,

ü+ν u̇− c2L uxx −
c2
L

12 r
2
0 uxxxx = − p0 ux uxx

cL = ωL,0 r0; ωL,0 and p0 were defined above.

– For near-sonic propagation (i.e. v ≈ cL), slow profile evolution
in time τ and defining the relative displacement w = uζ, one
obtains

wτ − awwζ + bwζζζ = 0

(for ν = 0); ζ = x− vt; a = p0/(2cL) > 0; b = cLr
2
0/24 > 0.

– This KdV Equation yields soliton solutions, ... (→ next page)
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The KdV description

The Korteweg-deVries (KdV) Equation

wτ − awwζ + bwζζζ = 0

yields compressive (only, here) solutions, in the form (here):

w1(ζ, τ) = −w1,msech
2

[
(ζ − vτ − ζ0)/L0

]
– This solution is a negative pulse for w = ux,
describing a compressive excitation for the displacement δx = u,
i.e. a localized increase of density n ∼ −ux.

www.tp4.rub.de/ ∼ioannis/conf/2004-Complexity-oral.pdf Complexity in Science and Society (Olympia, Greece), 2004
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The KdV description
The Korteweg-deVries (KdV) Equation

wτ − awwζ + bwζζζ = 0

yields compressive (only, here) solutions, in the form (here):

w1(ζ, τ) = −w1,msech
2

[
(ζ − vτ − ζ0)/L0

]
– Pulse amplitude: w1,m = 3v/a = 6vv0/|p0|;
– Pulse width: L0 = (4b/v)1/2 = [2v2

1r
2
0/(vv0)]

1/2;

– Note that: w1,mL
2
0 = constant (cf. experiments)†.

– This solution is a negative pulse for w = ux,
describing a compressive excitation for the displacement δx = u,
i.e. a localized increase of density n ∼ −ux.
– This is the standard treatment of dust-lattice solitons today ... †

† F. Melandsø 1996; S. Zhdanov et al. 2002; K. Avinash et al. 2003; V. Fortov et al. 2004.
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Characteristics of the KdV theory

The Korteweg - deVries theory, as applied in DP crystals:

– provides a correct qualitative description of compressive
excitations observed in experiments;

– draws benefit from the KdV “artillery” of analytical know-how
obtained in the past: integrability, multi-soliton solutions,
conservation laws, ... ;

www.tp4.rub.de/ ∼ioannis/conf/2004-Complexity-oral.pdf Complexity in Science and Society (Olympia, Greece), 2004
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Characteristics of the KdV theory

The Korteweg - deVries theory presented above:

– provides a correct qualitative description of compressive
excitations observed in experiments;

– benefits from the KdV “artillery” of analytical know-how
obtained throughout the years: integrability, multi-soliton
solutions, conservation laws, ... ;

but possesses a few drawbacks:

– approximate derivation: (i) propagation velocity v near
(longitudinal) sound velocity cL, (ii) time evolution terms omitted
‘by hand’, (iii) higher order nonlinear contributions omitted;

– only accounts for compressive solitary excitations (for Debye
interactions); nevertheless, the existence of rarefactive dust
lattice excitations is, in principle, not excluded.
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Longitudinal soliton formalism (continued)

Q.: What if we also kept the next order in nonlinearity ?
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Longitudinal soliton formalism (continued)

Q.: What if we also kept the next order in nonlinearity ?

– “Extended” description: :

ü + ν u̇− c2L uxx −
c2L
12
r20 uxxxx = − p0 ux uxx + q0 (ux)2 uxx

cL = ωL,0 r0; ωL,0, p0 ∼ −U ′′′(r) and q0 ∼ U ′′′′(r) (cf. above).

Rq.: q0 is not negligible, compared to p0! (instead, q0 ≈ 2p0 practically!)
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Longitudinal soliton formalism (continued)

Q.: What if we also kept the next order in nonlinearity ?

– “Extended” description: :

ü + ν u̇− c2L uxx −
c2L
12
r20 uxxxx = − p0 ux uxx + q0 (ux)2 uxx

cL = ωL,0 r0; ωL,0, p0 and q0 were defined above.

– For near-sonic propagation (i.e. v ≈ cL), and defining the
relative displacement w = uζ, one has

wτ − awwζ + â w2wζ+ bwζζζ = 0 (9)

(for ν = 0); ζ = x− vt; a = p0/(2cL) > 0; b = cLr
2
0/24 > 0;

â = q0/(2cL) > 0.
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Characteristics of the EKdV theory

The extended Korteweg - deVries Equation:

– accounts for both compressive and rarefactive excitations;

(horizontal grain displacement u(x, t))
– reproduces the correct qualitative character of the KdV
solutions (amplitude - velocity dependence, ... );

– is previously widely studied, in literature;

Still, ...

– It was derived under the assumption: v ≈ cL.
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One more alternative: the Boussinesq theory
The Generalized Boussinesq (Bq) Equation (for w = ux):

ẅ − c2Lwxx = c2
Lr2

0
12 wxxxx − p0

2 (w2)xx + q0
2 (w3)xx

– predicts both compressive and rarefactive excitations;

– reproduces the correct qualitative character of the KdV
solutions (amplitude - velocity dependence, ... );

– has been widely studied in literature;

and, ...
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One more alternative: the Boussinesq theory
The Generalized Boussinesq (Bq) Equation (for w = ux):

ẅ − c2Lwxx = c2
Lr2

0
12 wxxxx − p0

2 (w2)xx + q0
2 (w3)xx

– predicts both compressive and rarefactive excitations;

– reproduces the correct qualitative character of the KdV
solutions (amplitude - velocity dependence, ... );

– has been widely studied in literature;

and, ...

– relaxes the velocity assumption, i.e. is valid ∀ v > cL.

(end of Part 3)
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Part 4: Transverse Discrete Breathers - DB ( → poster )
– 1d DP crystals are highly discrete lattice configurations;
– Looking for discrete breather solutions (localized modes) e.g.
in the transverse direction, viz.
d2un

dt2
+ ω2

T,0 (un+1 + un−1 − 2un) + ω2
g δzn + αu2 + β u3 = 0

one obtains the bright-type DB solutions (localized pulses):

as well as the dark-type excitations (holes; Kivshar dark modes):

– Existence and stability criteria still need to be examined...
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Conclusions
We have seen that:
– Energy localization via modulational instability leading to the
formation of envelope excitations is possible in both transverse
and longitudinal directions ;

– Solitary waves can be efficiently modeled by existing soliton
theories (e.g. KdV, EKdV, MKdV; more accurately: Bq, EBq) ;

– Compressive and rarefactive excitations are predicted ;

– Discrete Breather -type localized modes exist (study further);

– Urge (!) for experimental confirmation (technical constraints?) ;

– Future directions: include dissipation (dust-neutral friction, ion
drag); particle-wake effects; mode coupling effects; ... (Realism!)

– Fertile soil for future studies: still a lot to be done!...
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Appendix I: Solutions of the NLSE
Localized envelope excitations 1: bright solitons

❏ The NLSE accepts various soliton solutions: ψ = ρ eiΘ ;
the total wavepacket is then: u ≈ ε ρ cos(kx− ωt+ Θ) where
the amplitude ρ and phase correction Θ depend on ζ, τ .

❏ Bright–type envelope soliton (pulse):

ρ = ρ0 sech

(
X − ue T

L

)
, Θ =

1
2P

[
ueX +(Ω−1

2
u2

e)T
]
. (10)

L =
√

2P
Q

1
ρ0

(X0 = 0)

(Θ0 = 0)
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Propagation of a bright envelope soliton (pulse)

This envelope modulated wavepacket is essentially a
propagating (and oscillating) localized pulse, confining the carrier
wave:
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Localized envelope excitations 2: dark/grey solitons

❏ Dark–type envelope solution (hole soliton):

ρ = ±ρ1

[
1− sech2

(
X − ueT

L′

)]1/2

= ±ρ1 tanh
(
X − ue T

L′

)
,

Θ =
1

2P

[
ueX −

(
1
2
u2

e − 2PQρ2
1

)
τ

]

L′ =

√
2
∣∣P
Q

∣∣ 1
ρ1

(X0 = 0) (11)

This is a
propagating
localized hole
(zero density void):
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dark/grey solitons (continued...)

❏ Grey–type envelope solution (void soliton):

ρ = ±ρ2

[
1− d2 sech2

(
X − ue T

L′′

)]1/2

Θ = ...

L′′ =

√
2
∣∣P
Q

∣∣ 1
dρ2

(12)

This is a
propagating
(non zero-density)
void:
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