1. Introduction

Modulational instability (MI), a well-known mechanism of energy
localization dominating wave propagation in nonlinear dispersive
media, has been widely investigated in the past, with respect to
plasma electrostatic modes, e.g. ion-acoustic waves (IAW), and
experiments have confirmed those studies |1].

The purpose of this study is to provide a generic methodologi-
cal framework for the study of the nonlinear (self-)modulation of
the amplitude of such electrostatic modes, a mechanism known
to be associated with harmonic generation and the formation
of localized envelope modulated wave packets, such as the ones
abundantly observed during laboratory experiments and satellite
observations, e.g. wn the Earth’s magnetosphere:
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Figure 2. Left: Wave form of broadband noise at base of
AKHR source. The signal consists of highly coherent [ nearly
monochromatic frequency of trapped wave) wawve packets.
Heght: Frequency spectrum of broadband noise showing the
electron acoustic wave (at ~ 5 kHz) and total plasma fre-
quency (at ~ 12 kHz) peaks. The broad LF maximum near
300 Hz belongs to the 1on acoustic wave spectrum participat-
(b) ing mn the 3 ms modulation of the electron acoustic waves.
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Figure 1. Satellite observations of modulation phenomena: (a) Cluster data,
from O. Santolik et al., J. Geophys. Res. 108, 1278 (2003); (b) FAST data,
from R. Pottelette et al., Geophys. Res. Lett. 26 (16) 2629 (1999); (c), (d)
from Ya. Alpert, Phys. Reports 339, 323 (2001).

2. The model: a generic description

In general, several known electrostatic plasma modes |2| consist of
propagating oscillations of one dynamical plasma constituent, say

o (mass my, charge qo = sqZqe; € is the absolute electron charge;
S = Sa = qa/|qa| = 1 is the charge sign),
against a background of one (or more) constituent(s):

o' (mass m,,, charge q.» = s Z €, similarly); the latter is (are)
often assumed to obey a known distribution, e.g. being in a fixed
(uniform): n, = const. or in a thermalized (Maxwellian) state
n; /Ny e~ 9o/ kBT (T,/: temperature, of species o’ = e, 1, ...)
for Simplicity, depending on the particular aspects (e.g. frequency
scales) of the physical system considered.

For instance,

— the ion-acoustic (IA) mode refers to ions (o = #) oscillating
against a Maxwellian electron background (o = e),

— the electron-acoustic (EA) mode refers to electron oscillations
(o = e) against a fixed ion background (o = 1),

and so forth |2].

The standard (single) fluid model for the inertial species a provides
the moment evolution equations:

0
a a—? LV (na) =0,
—u+u-Vu = —SV¢—EVp,
ot 5 n
T tu-Vp = —ypV-u; (1)
ot
also
Vg =¢—a¢”+a' ¢’ —sB(n—1); (2)
i.e. Poisson’s Eq.: V20 = —dr Zsp:@’{@@/} qsp Nvsp, close to
equilibrium.
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Overall neutrality is assumed at equilibrium:

Z qspNsp0 =0 = SaZang o+ Sy Z So/ L) Nl () -
sp=a,{a,a’} o/
We have defined the reduced (dimensionless) quantities:
- particle density: n = nq/ng 0
- mean (fluid) velocity: u = [mq/ (kT ?u; = ug/cx:
- dust pressure: p = pa/po = Pa/ (e 0k BT%);
- electric potential: ¢ = Zae®/(kpTy) = |qa|®/(kpTk);
-y =(f+2)/f=Cp/Cy (for [ degrees of freedom).
Also, time and space are scaled over:
- tg, e.g. the inverse DP plasma frequency

wp_,é = (47m0470q(2l/ma)_1/2

and

- 10 = cxtp, e.g. an effective Debye length
ADerf = (kBTx/ man,a)l/ .

- The dimensionless parameters o, o’ and 3 appearing in (2) should
be determined exactly for any specific problem. They incorporate
all the essential dependence on the plasma parameters.
Finally, 0 = Tw/(ng ok pTx) is the temperature (ratio).

3. Multiple scales (reductive) perturbation method.

Let S be the state (column) vector (n, u, p, ¢)”;
the equilibrium state is S(0) = (1, 0, 1, O)T.
We shall consider small deviations by taking (e < 1)

S =50 4 sy 2504 —s0) 4 3 g,
n=1

We define the stretched (slow) space and time variables |3, 1]: ( =
e(x —\t), T =€t (AER); the (fast) carrier phase is 6] =
k - r — wt (arbitrary propagation direction), while the harmonic
amplitudes vary slowly along x:

5 — Z S;f}’)(c, - Jil(kr—wt)

[=—00

(S(n> = S<n>*)' wavenumber K is (k;, k) = (k cos@, k sin0)
ja_l jvl 7 LY 7 .

— obliqgue modulation!

Substituting into (2), one obtains, successively (details in |5]):
- the first harmonics of the perturbation:

2
vy _ I+ 1oy 1 ny _ kK (1)
SR b g _;pl _;k.ul " woeosf Lo (3)
- the compatibility condition (dispersion relation):
2
o Pk 2
W —k2+1+70k, (4)

(2)

- the 2nd order contributions: Sy 5: — harmonic generation !!!
- the compatibility condition, forn =2, [ = 1:
Ow , k 1
w'(k)cosh = —
(k) [(1 + k2)?

)\:Ug(k):a—kx: N

A is therefore the group velocity in the modulation (x—) direction.

+ 70] cos 0 ;

4. Derivation of the Nonlinear Schrodinger Equation

Proceeding to order ~ €3, the equations for [ = 1 yield an explicit
compatibility condition i.e. the Nonlinear Schrodinger Equation
0 0

v pov

2.0
Lo a—@%?WW—O. (5)

20k2
P is related to the curvature of the dispersion curve (4).
— Nonlinearity coefficient () = Z;L':o (2, due to carrier wave
self-interaction;
— Qo are due to the 0th/2nd order harmonics,
— ()1 is related to the cubic term in (2),
— Q34 are due to the temperature effect (via o).

2 9
— Dispersion coefficient P = 10°% — 5 [w”(k) cos O+w' (k)™ ar

An expression for @) (too lengthy!) can be found in detail in [5].

5. Modulational stability analysis

Linearizing around the monochromatic solution of Eq. (5): ¢ =
a1 n ~ A L7 .
Y Q1T 1 e ie. setting ¢ = g + €1 ez<k§_°‘”>, we obtain
the (perturbation) dispersion relation:

2)

The wave will be stable (V /%) if the product P() is negative.
For positive PQ > 0, instability sets in for ke = \/2%\@@1’0\;

the instability growth rate o = |[Imw(k)|, reaches its maximum

value opar = Q| wl,O > for k = ker /2.

o = Pk (1%2 — Q%MLO

6. Localized envelope excitations

We finally obtain a localized modulated wave packet in the form:
Y = ey cos(kr — wt + O)

+O(€%)], where the slowly varying amplitude y(ex, et) and
phase correction O(ex, et) are determined by (solving) Eq. (5)
for 1) = g exp(10) (see [0] for details).

— Bright-type solitons (pulses) for P@Q > 0:

op \ 1/? X 0. T 1 V2
Yy = (@> sech( 7 ) ., = op [veXJr (Q—?) T]

where

— Ve 1s the envelope velocity:

— L 1s the pulse’s spatial width;

— L and € is the pulse’s time oscillation (at rest) frequency;

— L and v satisfy Ly = (QP/Q)l/2 = constant;

— the maximum amplitude g is independent from the velocity ve;
of. the Korteweg-deVries (KdV) solitons, where L%y = const.
and 1y grows with v].
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Figure 2. Bright type (pulse) soliton solution of the NLS equation, for two
different parameter sets (PQ > 0).

— Dark/grey type solitons (holes) for P@Q) < 0:

X —v.T 1 V2
L,e ) O = ﬁ[veXJr(QPQA%—EG)T}

Yo = ¢y tanh(
(7)

(see Fig. 2a): again, L'y, = (2|P/Q[)1/2 (=cst.).

The grey envelope reads [0]:

vy = {1 — d*sech®{[X — v, T)/L"}}1/?, (8)

1

O=5p

1
[vo X — (51/02 — QPQMS) T + @0]

d tanh (M)

L//
[1 — d2 sech? (XL?,JF T)
Here
— Oq is a constant phase;

— S denotes the product S = sign(P) X sign(ve — V));
— The pulse width L” satisfies L” = (\P/Q‘)1/2/<d¢”0)
— 0 < d < 1; the real parameter d is given by:

> = 1+ (ve = V0)*/(2PQY") < 1:

— S gin~ !

m

— Vo = const. € R satisfies:

Vo — V2APQI U2 < ve < Vi+1/2|PQ| 2.

For d = 1 (thus Vjj = ve), one recovers the dark envelope soliton

(cf. above).
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Figure 3. Soliton solutions of the NLS equation for PQ < 0 (holes); these
excitations are of the: (a) dark type, (b) grey type. Notice that the amplitude
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never reaches zero in (b).

So, the essential conclusion to retain is:
- P() > 0: Unstable linear wave, bright-type excitations;

- PQ < 0: Stable linear wave, dark/grey-type excitations.
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