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I. THE MODEL

We shall consider the vertical (off-plane, ∼ ẑ) grain displacement in a dust crystal (as-

sumed quasi-one-dimensional: identical grains of charge q and mass M are situated at

xn = n r0, where n = ...,−1, 0, 1, 2, ...), by taking into account the intrinsic nonlinearity of

the sheath electric (and/or magnetic) potential. The in-plane (longitudinal, acoustic, ∼ x̂

and shear, optical, ∼ ŷ) degrees of freedom are assumed suppressed; this situation is indeed

today realized in appropriate experiments, where an electric potential (via a thin wire) [21]

or a coherent light (laser) impulse [22–24] is used to trigger transverse dust grain oscillations,

while (a) confinement potential(s) ensure(s) the chain’s in-plane stability.

A. Equation of motion

The vertical grain displacement obeys an equation in the form [18, 19]

d2δzn

dt2
+ ν

dδzn

dt
+ ω2

0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn + α (δzn)2 + β (δzn)3 = 0 , (1)

where δzn(t) = zn(t) − z0 denotes the small displacement of the n−th grain around the

(levitated) equilibrium position z0, in the transverse (z−) direction. The characteristic

frequency ω0 = [−qΦ′(r0)/(Mr0)]
1/2 results from the dust grain (electrostatic) interaction

potential Φ(r), e.g. for a Debye-Hückel potential [26]: ΦD(r) = (q/r) e−r/λD , one has:

ω2
0,D = q2/(Mr3

0) (1+r0/λD) exp(−r0/λD) , where λD denotes the effective DP Debye radius

[1]. The damping coefficient ν accounts for dissipation due to collisions between dust grains

and neutral atoms. The gap frequency ωg and the nonlinearity coefficients α, β are defined

via the overall vertical force:

F (z) = Fe/m − Mg ≈ −M [ω2

gδzn + α (δzn)2 + β (δzn)3] + O[(δzn)4] , (2)

which has been expanded around z0 by formally taking into account the (anharmonicity

of the) local form of the sheath electric (follow exactly the definitions in Ref. [18], not

reproduced here) and/or magnetic [27] field(s), as well as, possibly, grain charge variation

due to charging processes [19]. Recall that the electric/magnetic levitating force(s) Fe/m

balance(s) gravity at z0. Notice the difference in structure from the usual nonlinear Klein-

Gordon equation used to describe one-dimensional oscillator chains — cf. e.g. Eq. (1) in
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Ref. [6]: TDLWs (‘phonons’ ) in this chain are stable only in the presence of the field force

Fe/m.

For convenience, we may re-scale the time and vertical displacement variables over appro-

priate quantities, i.e. the characteristic (single grain) oscillation period ω−1
g and the lattice

constant r0, respectively, viz. t = ω−1
g τ and δzn = r0qn; Eq. (1) is thus expressed as:

d2qn

dτ 2
+ ε( qn+1 + qn−1 − 2 qn) + qn + α′ q2

n + β ′ q3

n = 0 , (3)

where the (dimensionless) damping term, now expressed as (ν/ωg)dqn/dτ ≡ ν ′q̇n, will be

henceforth omitted in the left-hand side. The coupling parameter ε = ω2
0/ω

2
g measures

the strength of the inter-grain interactions (with respect to the single-grain vertical vibra-

tions); this is typically a small parameter, in real experiments (see below). The nonlinearity

coefficients are now: α′ = αr0/ω
2
g and β ′ = βr2

0/ω
2
g .

Eq. (3) will be the basis of the analysis that will follow. Note that the primes in α′ and

β ′ will henceforth be omitted.

B. The model Hamiltonian

In order to relate our physical problem to existing generic models from solid state physics,

it is appropriate to consider the equation of motion (1) as it may be derived from a Hamil-

tonian function, which here reads:

H =
N

∑

j=1

[ p2
j

2mj
+ V (qj) −

ε

2
(qj − qj − 1)2

]

. (4)

Here, pj obviously denotes the (classical) momentum pj = Mq̇j . The substrate potential,

related to the sheath plasma environment, is of the form:

V (qj) =
1

2
q2

j +
α

3
q3

j +
β

4
q4

j . (5)

The coupling parameter ε takes small numerical values (cf. below), accounting for the high

lattice discreteness anticipated in this study. The minus sign preceding it denotes the inverse

dispersive character of (linear excitations propagating in) the system; see the discussion

below. Upon setting ε → −ε, the ‘traditional’ (discretized) nonlinear Klein-Gordon model

is recovered [28].
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II. LINEAR WAVES

Retaining only the linear contribution and considering oscillations of the type, δzn ∼

exp[i (knr0 −ωt)] + c.c. (complex conjuguate) in Eq. (1), one obtains the well known trans-

verse dust lattice (TDL) wave optical-mode-like dispersion relation

ω2 = ω2

g − 4ω2

0 sin2

(

kr0

2

)

, (6)

i.e.

ω̃2 = 1 − 4ε sin2(k̃/2) . (7)

See that the wave frequency ω ≡ ω̃ωg decreases with increasing wavenumber k = 2π/λ ≡

k̃/r0 (or decreasing wavelength λ), implying that transverse vibrations propagate as a back-

ward wave: the group velocity vg = ω′(k) and the phase velocity ωph = ω/k have opposite

directions (this behaviour has been observed in recent experiments). The modulational

FIG. 1: The dispersion relation of the TDL excitations: frequency ω (normalized over ωg) versus

wavenumber k. The value of ω0/ωg (∼ coupling strength) increase from top to bottom. Note that

upper (less steep, continuous) curve is more likely to occur in a real (weakly-coupled) DP crystal.

stability profile of these linear waves (depending on the plasma parameters) was investi-

gated in Refs. [18, 19]. Notice the natural gap frequency ω(k = 0) = ωg = ωmax, corre-

sponding to an overall motion of the chain’s center of mass, as well as the cutoff frequency

ωmin = (ω2
g − 4ω2

0)
1/2 ≡ ωg (1 − 4ε2)1/2 (obtained at the end of the first Brillouin zone

k = π/r0) which is absent in the continuum limit, viz. ω2 ≈ ω2
g − ω2

0 k2 r2
0 (for k � r−1

0 );

obviously, the study of wave propagation in this (k <
∼ π/r0) region invalidates the continuum

treatment employed so far in literature. The essential feature of discrete dynamics, to be
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retained here, is the (narrow) bounded TDLW (‘phonon’ ) frequency band, limited in the

interval ω ∈ [(ω2
g −4ω2

0)
1/2, ωg]; note that one thus naturally obtains the stability constraint:

ω2
0/ω

2
g = ε < 1/4 (so that ω ∈ < ∀k ∈ [0, π/r0]).

III. EXISTENCE OF DISCRETE BREATHERS - ANALYSIS

We are interested in the (possibility for the) existence of multi-mode breathers, i.e. lo-

calized (discrete) excitations in the form:

qn(τ) =
∞
∑

m=−∞

An(m) exp(imωτ) , (8)

with An(m) = A∗
n(−m) for reality and |An(m)| → 0 as n → ±∞, for localization.

A. The formalism

Inserting Eq. (8) in the equation of motion (3), one obtains a (numerable) set of algebraic

equations in the form:

An+1(m) + An−1(m) + CmAn(m) = −
β

ε

∑

m1

∑

m2

∑

m3

An(m1)An(m2)An(m3)

−
α

ε

∑

m4

∑

m5

An(m4)An(m5) , (9)

where the dummy indices mj (j = 1, 2, ..., 5) satisfy m1 +m2 +m3 = m4 +m5 = m; we have

defined:

Cm = −
(

2 −
1 − m2ω2

ε

)

. (10)

In order to be more precise and gain in analytical tractability (yet somewhat losing in

generality), one may assume that the contribution of higher (for m ≥ 2) frequency harmonics

may be neglected. Eq. (8) then reduces to:

qn(t) ≈ 2An(1) cos ωτ + An(0) . (11)

Note the zeroth-harmonic (mean displacement) term, for n = 0, which is due to the cubic

term (∼ α, above), and should vanish for α = 0. The system (9) thus becomes (for m = 0, 1):

An+1(1) + An−1(1) + C1An(1) = −2
α

ε
An(1)An(0) −

β

ε
[An(1)A2

n(0) + 3A2

n(1)An(−1)]

An+1(0) + An−1(0) + C0An(0) = −2
α

ε
An(1)An(−1) − 6

β

ε
An(0)An(1)An(−1) , (12)
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i.e., setting An(1) = An(−1) = An and An(0) = Bn, viz. qn(t) = 2An cos ωτ + Bn:

An+1 + An−1 + C1An = −2
α

ε
AnBn −

β

ε
(AnB2

n + 3A3

n)

Bn+1 + Bn−1 + C0Bn = −2
α

ε
A2

n − 6
β

ε
A2

nBn . (13)

We see that the amplitudes An (Bn) of the first (zeroth) harmonic terms, corresponding to

the n−th site, will be given by the iterative solution of Eqs. (13) [or, of Eqs. (9), should

higher harmonics m be considered]. In specific, one may express (13) as:

an+1 = −cn − C1an + 2
α

ε
anbn +

β

ε
(anb2

n + 3a3

n) ≡ f1(an, bn, cn, dn)

bn+1 = −dn − C0bn + 2
α

ε
a2

n + 6
β

ε
a2

nbn ≡ f0(an, bn, cn, dn)

cn+1 = an

dn+1 = bn , (14)

and then iterate, for a given initial condition (a1, b1, c1, d1) = (A1, B1, A0, B0), the map

defined by (14).

At this stage, one needs to determine whether the fixed point of the 4-dimensional map

(14) [or of the complete 4N-dimensional map corresponding to (9), in general] is hyperbolic,

and examine the dimensionality of its stable and unstable manifolds. It is known [12, 13]

that the existence of discrete breathers is associated with homoclinic orbits, implying a

saddle point at the origin.

Let us now linearize the map (14) near the fixed point (a1, b1, c1, d1) = (0, 0, 0, 0) ≡ 04,

by setting e.g. (an, bn, cn, dn) = (ξ1, ξ2, ξ3, ξ4)
T
n ≡ Ξn ∈ <4, where ξj,n � 1 (j = 1, ..., 4). One

thus obtains the matrix relation:

Ξn+1 = MΞn , (15)

where M is the matrix:

M =





















−C1 0 −1 0

0 −C0 0 −1

1 0 0 0

0 1 0 0





















. (16)

Now, it is a trivial algebraic exercise to show that the characteristic polynomial p(λ) ≡

Det(M − λI) of this matrix may be factorized as:

p(λ) = (λ2 + C0λ + 1) (λ2 + C1λ + 1) ≡ p0(λ)p1(λ) ,
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implying the existence of 4 eigenvalues, say λ1,2,3,4, such that p0(λ1,2) = p0(λ3,4) = 0. One

may check that the condition for all eigenvalues to be real and different, hence for 04 to be

a saddle point, amounts to the constraint: |C0,1| > 2, i.e. C0 /∈ [−2, 2] and C1 /∈ [−2, 2].

Recalling that

C1 = (1 − 2ε − ω2)/ε , C0 = (1 − 2ε)/ε, (17)

from (10), one finds the (simultaneous) constraints: 1−4ε > 0 and (1−ω2)(1−ω2−4ε) > 0.

One immediately sees that the former (i.e. ε < 1/4) corresponds to the linear stability

condition mentioned above, while the latter amounts to the requirement that the breather

frequency should lie outside the ‘phonon band’, viz. ω2/ω2
g /∈ [1 − 4ε, 1].

—

It is straightforward to show that in case one considers the complete multi-mode map,

defined by Eq. (9), one obtains an analogous factorizable characteristic polynomial for the

4N×4N matrix M, viz. p(λ) =
∏

m pm(λ). The same analysis then leads to the hyperbolicity

criterion:

|Cm| < 2 m = 0, 1, 2, ...

One thus recovers, in addition to the first of the above constraint (ε < 1/4), the condition:

mω/ωg /∈ (1− 4ε, 1)1/2 (∀m = 0, 1, 2, ...), which coincides with the – physically meaningful –

non-breather-phonon-resonance condition found via different analytical methods [8–10]. We

see that the breather frequency, as well as all its multiples (harmonics) should lie outside

the allowed linear vibration frequency band, otherwise the breather may enter in resonance

with the linear TDLW (‘phonon’ ) dispersion curve, resulting in its being decomposed into

a superposition of linear excitations (and hence de-localized).

B. Numerical analysis

At this stage, one is left with task of finding the numerical values of An, Bn [cf. (13)] for

a given homoclinic orbit; these may then be used as an initial condition, in order to solve

the equation (13) numerically, by considering a given number of particles N and harmonic

modes mmax (viz. m = 0, 1, 2, ..., mmax). One thus obtains a given set of numerical values

for un (n = 1, 2, ..., N), which constitute the numerical solution for the anticipated breather

excitation. The stability of the solution thus obtained, say q̂n, my be checked by directly
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substituting with qn = q̂n + ξn (for n = −N, ..., 0, ..., N) into the initial equation of motion

(3).

o o o o o o o o o o o o o o 

FIG. 2: Localized discrete breather dust lattice excitations; the successive lattice site displacements

are depicted at maximum amplitude: (a) odd-parity solution; (b) even-parity solution.

This numerical scheme is now being elaborated, and the detailed results will be reported

in an extended paper, in preparation.

IV. CONCLUSIONS - DISCUSSION

We have investigated, from first principles, the possibility of existence of localized discrete

breather-type excitations associated with vertical dust grain motion in a dust mono-layer,

which is assumed to be one-dimensional. It may be noted that these localized structures

owe their existence to the intrinsic lattice discreteness in combination with the nonlinearity

of the plasma sheath. Both are experimentally tunable physical mechanisms, so our results

may be investigated (and will hopefully be verified) by appropriately designed experiments.

The experimental confirmation of their existence in dust crystals appears as a promising

field, which may open new directions e.g. in the design of applications.
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