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Introduction

We show that nonlinear interactions between whistlers and finite
amplitude density perturbations are governed by a a nonlinear
Schrödinger equation for the modulated whistlers (whistlerons),
and a set of equations for arbitrary large amplitude density pertur-
bations in the presence of the whistler ponderomotive force. The
governing equations are solved numerically to show the existence of
large scale density perturbations that are self-consistently created
by localized modulated whistler wavepackets. Our numerical re-
sults are found to be in good agreement with experimental results.

Theory

The dynamics of modulated whistler wavepacket in the presence of
electron density perturbations associated with low-frequency ion-
acoustic fluctuations and nonlinear frequency-shift caused by the
magnetic field-aligned free streaming of electrons (with the flow
speed vez) is governed by a nonlinear Schrödinger equation

i(∂t + vg∂z)E + (v′g/2)∂2
zzE + (ω0 − ω)E = 0, (1)

where ω = k2
0c

2ωce/(ω2
pe +k2

0c
2)+k0vez, and ω2

pe = ω2
pe,0ne/n0 is

the local plasma frequency including the electron density ne of the
plasma slow motion. The group velocity and the group dispersion
of whistlers are vg = ∂ω0/∂k0 = 2(1 − ω0/ωce)ω0/k0 and v′g =

∂2ω0/∂k2
0 = 2(1− ω0/ωce)(1− 4ω0/ωce)ω0/k

2
0, respectively.

The equations for the ion motion involved in the low-frequency (in
comparison with the whistler wave frequency) ion-acoustic pertur-
bations are

∂tni + ∂z(niviz) = 0 (2)

and

∂tviz + (1/2)∂zv
2
iz = −(e/mi)∂zφ− (∂zpi)/mini, (3)

where the ion pressure is given by pi = pi,0(ni/n0)
3.

The electron dynamics in the plasma slow motion is governed by
the continuity and momentum equations, viz.

∂tne + ∂z(nevez) = 0 (4)

and
0 = (e/Te)∂zφ− ∂zln(ne/n0)) + F, (5)

where Te is the electron temperature, φ is the ambipolar potential,
and the low-frequency ponderomotive force of electron whistlers is

F = [ω2
pe,0/ω0(ωce − ω0)](∂z +

2

vg
∂t)|E|2/4πn0Te. (6)

The system of equations is closed by the quasi–neutrality ni =
ne ≡ n, giving viz = vez ≡ vz by the continuity equations, so that
∂tn + ∂z(nvz) = 0. Eliminating ∂zφ from the governing equations
for low- frequency density perturbations, we have

∂tvz +(1/2)∂zv
2
z = −(Te/mi)[∂zln(n/n0)−F ]−(∂zpi)/min (7)

together with
∂tn + ∂z(nvz) = 0. (8)

The nonlinear Schrödinger equation for the whistler electric field
together with the low-frequency equations form a closed set for our
purposes.
The normalized system of equations are [1]

∂τN = −∂ξ(Nu), (9)
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and
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+ i
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(11)

where the constants are α = (1 + κ2)2ω2
pe,0/ω

2
ceκ

2 and P = (1 +

κ2)(1 − 3κ2)V 2
g /4κ2Ωc where κ = ck0/ωpe,0. The sign of the

coefficient P , multiplying the dispersive term in Eq. (11), depends
on κ: When κ < 1/

√
3, P is positive and for κ < 1/

√
3 we see

that P is negative.

Solitary waves in the small-amplitude limit

In the small-amplitude limit, viz. N = 1 + N1, u = u1, where N1,
u1 � 1, Eqs. (9)–(11) yield

∂τN1 = −∂ξu1, (12)

∂τ
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(
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)
, (13)

and

∂τE = −Vg∂ξE + i
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ξξE +
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u
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)
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2
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E

]
. (14)

Here, we look for whistler envelope solitary waves moving with the
group speed Vg, so that N1 and u1 depends only on χ = ξ − Vgτ ,
while the electric field envelope is assumed to be of the form E =
W (χ) exp(iΩτ − ikξ), where W is a real-valued function of one
argument. Using the boundary conditions N1 = 0, u1 = 0 and
W = 0 at |ξ| = ∞, we have k = 0, N1 = −W 2α/(1 − V 2

g )
and u1 = VgN1. We here note that subsonic (Vg < 1) solitary
waves are characterized by a density cavity while supersonic (Vg >
1) envelope solitary waves are characterized by a density hump.
The system of equations (12)–(14) is then reduced to the cubic
Schrödinger equation

P∂2
χχW + QW 3 − ΩW = 0, (15)

where Q = αΩcκ
2/(1+κ2)(1−V 2

g ). Localized solutions of Eq. (7)
only exist if the product PQ is positive. We note that P > 0 (P <
0) when the whistler frequency ω0 < ωce/4 (ω0 > ωce/4), and that
Q < 0 (Q > 0) when |Vg| < 1 (|Vg| > 1), so in the frequency band
where ω0 < ωce/4, only subsonic solitary waves, characterized by a
localized density cavity can exist, while in the frequency band ω0 >
ωce/4, only supersonic solitary waves characterized by a localized
density hump exist. Equation (7) has exact solitary wave solutions
of the form

W = (2Ω/Q)1/2sech[(Ω/P )1/2(ξ − Vgτ − ξ0)], (16)

where Vg and Ω and the displacement ξ0 are the three free parame-
ters for a given set of physical plasma parameters. Finally, we recall
that the dispersion relation for the electron whistlers used here is
valid if ω0 >

√
ωceωci. For subsonic whistlers having the group

speed vg = CsVg (where Vg < 1), where vg ≈ 2ω0/k0 and ω0 ≈
k2

0c
2ωce/ω

2
pe,0, we have ck0/ωpe,0 = (Cs/c)(ωpe,0/ωce)Vg/2 >

(me/mi)
1/4.

Numerical results

Figure 1: A supersonic whistler wave

We have investigated the properties of modulated whistlers wave
packets by solving numerically Eqs. (9)–(11). We have here
chosen parameters from a recent experiment, where the forma-
tion of localized whistler envelopes have been observed [3]. In
the experiment, one has n0 = 1.2 × 1012 cm−3 and B0 = 100
G, so that ωpe,0 = 6.7 × 1010 s−1 and ωce = 1.76 × 109 s−1,
respectively. Hence, ωce/ωpe,0 = 0.026. The frequency of the

whistler wave is ω0 = 2π × 160 × 106 s−1 = 1.0 × 109 s−1, so
that ω0/ωce ≈ 0.57 > 0.25. Thus, the whistlers have negative
group dispersion. From the dispersion relation of whistlers, we have
κ ≈ 1.15, which gives k0 ≈ 257 m−1. The latter corresponds to
whistlers with a wavelength of 2.4 cm. Furthermore, the whistler
group velocity is vg = 3.36 × 106 m/s. The argon ion-electron
plasma (mi/me = 73400) had the temperatures of Te = 10 eV
and Ti = 0.5 eV, giving the sound speed 5.25 × 103 m/s, and the
normalized group velocity Vg = vg/Cs = 640. In Fig. 1, we have
illustrated the existence of localized whistler envelope solitons, in
which the electric field envelope (left panels) is accompanied with
a density hump (right panels). We notice that the density hump
is relatively small, due to the large group velocity of the whistler
waves.
In Fig. 2, we have presented the development of a large-amplitude
whistler pulse, which was launched in a plasma perturbed by ion-
acoustic waves, with a density modulation of one percent. This
simulates, to some extent, the experiment by Kostrov et al., where
the density and magnetic field were perturbed by a low-frequency
conical refraction wave, giving rise to a modulation of the electron
whistlers.

Figure 2: Formation of solitary whistler waves

Here, as in the experiment, we observe that a modulated electron
whistler pulse (middle panel of Fig. 2) develops into isolated soli-
tary electron whistlers (lower panel). We note that the wavelength
of the whistlers is ≈ 2.5 cm, while the typical width of a solitary
pulse is ∆ξ ≈ 3× 104 in the scaled length units, corresponding to
≈ 64 cm, so that each solitary wave train contains 25 wavelengths
of the high-frequency whistlers. In one experiment, illustrated in
the lower panel of Fig 4 in Ref. [3], one finds that the width of
the solitary whistler pulse in time is 0.2 µs, which with the group
speed vg = 3.36 × 106 m/s gives the width ∼ 60 cm in space of
the solitary wave packets, in good agreement with our numerical
results. From the relation N1 = −W 2α/(1−V 2

g ) valid for solitary
whistlers in the small-amplitude limit, and with the amplitude of
W = |E| approximately 0.3 seen in the lower panel of Fig. 2, we
can estimate the relative amplitude of the density hump associated
with the solitary waves to be of the order 10−3, i.e. much smaller
than the modulation ∼ 10−2 due to the ion-acoustic waves excited
in the initial condition.
Next, we study the properties of subsonic whistler envelope solitary
pulses which have the normalized group speed Vg = 0.5. Here,
the restrictive condition ck0/ωpe,0 = (Cs/c)(ωpe,0/ωce)Vg/2 >

(me/mi)
1/4 requires somewhat higher values of the plasma tem-

perature and ωpe,0/ωce for their existence. With mi/me = 30000,

we have (me/me)
1/4 ≈ 0.1. We take κ = ck0/ωpe,0 = 0.2,

Cs = 105 m/s (corresponding to Te ∼ 1400 eV) η = 0.1, and
ωpe,0/ωce = 2400. Thus, Ωc = 0.072 and ω0/ωce ≈ 0.039. For
these values of the parameters, there exist solitary whistler pulse
solutions, which we have displayed in Fig. 3.

Figure 3: Subsonic whistler waves

Here, we have used the exact solution in the small-amplitude limit
as an initial condition for the simulation of the full system of equa-
tions (1)–(3). The bell-shaped whistler electric field envelope is
accompanied with a large-amplitude plasma density cavity.
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