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Abstract

Quasi-crystals formed by charged mesoscopic dust grains (dust lattices), observed since hardly

a decade ago, are an exciting paradigm of a nonlinear chain. In laboratory discharge experiments,

these quasi-lattices are formed spontaneously in the sheath region near a negative electrode, usually

at a levitated horizontal equilibrium configuration where gravity is balanced by an electric field. It

is long known (and experimentally confirmed) that dust-lattices support linear oscillations, in the

longitudinal (acoustic mode) as well as in the transverse, in plane (acoustic-) or off-plane (optic-like

mode) directions. Either due to the (typically Yukawa type) electrostatic inter-grain interaction

forces or to the (intrinsically nonlinear) sheath environment, nonlinearity is expected to play an

important role in the dynamics of these lattices. Furthermore, the coupling between the different

modes may induce coupled nonlinear modes. Despite this evidence, the elucidation of the nonlinear

mechanisms governing dust crystals is in a rather preliminary stage. In this study, we derive a set

of (coupled) discrete equations of motion for longitudinal and transverse (out-of-plane) motion in a

one dimensional model chain of charged dust grains. In a continuum approximation, i.e. assuming

a variation scale which is larger than the lattice constant, one obtains a set of coupled modified

Boussinesq-like equations. Different nonlinear solutions of the coupled system are discussed, based

on localized travelling wave ansätze and on coupled equations for the envelopes of co-propagating

quasi-linear waves.
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I. INTRODUCTION

Recent studies of various collective processes in dust contaminated plasmas (DP) [1] have

been of significant interest in relation with linear and nonlinear waves which are observed in

laboratory and space plasmas. An issue of particular importance is the formation of strongly

coupled DP crystals by highly charged dust grains, for instance in the sheath region above a

horizontal negatively biased electrode in experiments [1, 2]. Low-frequency oscillations may

occur in these mesoscopic dust grain quasi-lattices, in both longitudinal (acoustic mode)

[3] and transverse (in-plane shear acoustic mode, off-plane optic-like mode) directions, as

theoretically predicted and experimentally observed (see in Ref. [1] for a review).

In this paper, we focus on the nonlinear description of dust grain displacements in a one-

dimensional dust crystal, which is suspended in a levitated horizontal equilibrium position

where gravity and electric (or, possibly magnetic [4]) forces balance each other. Considering

the coupling between the horizontal (∼ x̂) and vertical (off-plane, ∼ ẑ) degrees of freedom,

and an arbitrary inter-grain interaction potential form U(r) (e.g. Debye or else) and sheath

potential Φ(z) (not necessary parabolic), we aim in deriving a set of equations which should

serve as a basis for forthcoming studies of the nonlinear behaviour of longitudinal and

transverse dust lattice waves (LDLWs, TDLWs) propagating in these crystals. The relation

to recent studies of a similar scope (here recovered as special cases) is also discussed.

FIG. 1: Dust grain vibrations in the longitudinal (∼ x̂) and transverse (∼ ẑ) directions, in a 1d

dust lattice.
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II. THE MODEL

Let us consider a layer of charged dust grains (mass M and charge q, both assumed

constant for simplicity) of lattice constant r0. The Hamiltonian of such a chain is of the

form

H =
∑

n

1

2
M

(

drn

dt

)2

+
∑

m6=n

U(rnm) + Φext(rn) ,

where rn is the position vector of the n−th grain; Unm(rnm) ≡ q φ(x) is a binary interaction

potential function related to the electrostatic potential φ(x) around the m−th grain, and

rnm = |rn − rm| is the distance between the n−th and m−th grains. The external potential

Φext(r) accounts for the external force fields in which the crystal is embedded; in specific, Φext

takes into account the forces acting on the grains (and balancing each other at equilibrium,

ensuring stability) in the vertical direction (i.e. gravity, electric and/or magnetic forces); it

may also include the parabolic horizontal confinement potential imposed in experiments for

stability [5] as well as, for completeness, the initial laser excitation triggering the oscillations

in experiments.

A. 2d equation of motion

Considering the motion of the n−th dust grain in both the longitudinal (horizontal, ∼ x̂)

and the transverse (vertical, off–plane, ∼ ẑ) directions (i.e. suppressing the transverse in-

plane – shear – component, ∼ x̂), so that rn = (xn, zn), we have the two-dimensional (in

x, z) equation of motion

M
(

d2rn

dt2
+ ν

drn

dt

)

= −
∑

n

∂Unm(rnm)

∂rn
+ Fext(rn) ≡ qE(rn) + Fext(rn) , (1)

where Ej(x) = −∂φ(r)/∂xj is the (interaction) electrostatic field and Fext,j = −∂Φext(x)/∂xj

accounts for all external forces in the j− direction (j = 1/2 for xj = x/z); the usual ad hoc

damping term was introduced in the left-hand-side of Eq. (1), involving the damping rate

ν due to dust–neutral collisions.

B. Nonlinear vertical confining potential

We shall assume a smooth, continuous variation of the (generally inhomogeneous) field

intensities E and/or B, as well as the grain charge q (which may vary due to charging
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processes) near the equilibrium position z0 = 0. Thus, we may develop

E(z) ≈ E0 + E ′
0 z +

1

2
E ′′

0 z
2 + ... ,

B(z) ≈ B0 + B′
0 z +

1

2
B′′

0 z
2 + ... ,

and

q(z) ≈ q0 + q′0 z +
1

2
q′′0 z

2 + ... ,

where the prime denotes differentiation with respect to z and the subscript ‘0’ denotes

evaluation at z = z0, viz. E0 = E(z = z0), E
′
0 = dE(z)/dz|z=z0

and so forth. Accordingly,

the electric force Fe = q(z)E(z) and the magnetic force Fm = −∂(mB)/∂z = −2αB ∂B/∂z

(where the grain magnetic moment µ is related to the grain radius a and permeability µ via

m = (µ− 1)a3B/(µ+ 2) ≡ αB [6]), which are now expressed as

Fe(z) ≈ q0E0 + (q0E
′
0 + q′0E0) z +

1

2
(q0E

′′
0 + 2q′0E

′
0 + q′′0E0) z

2 + ... ,

and

Fm(z) ≈ −2αB0B
′
0 − 2α(B′

0
2
+B0B

′′
0) z − α(B0B

′′′
0 + 3B′

0B
′′
0) z

2 + ... ,

may be combined to give

Fe + Fm = −
∂Φ

∂z
,

where we have introduced the phenomenological potential Φ(z)

Φ(z) ≈ Φ(z0) +
∂Φ

∂z

∣

∣

∣

∣

z=z0

z +
1

2!

∂2Φ

∂z2

∣

∣

∣

∣

z=z0

z2 +
1

3!

∂3Φ

∂z3

∣

∣

∣

∣

z=z0

z3 + ...

≡ Φ0 + Φ(1) z +
1

2
Φ(2) z

2 +
1

6
Φ(3) z

3 + · · · . (2)

The definitions of Φ(j) ≡ (∂jΦ(z)/∂zj |z=z0
= −(qE0)

(j−1)
0 + α(B2)

(j)
0 (here, the superscript

within parenthesis obviously denotes the order in partial differentiation; j = 1, 2, ...) are

obvious:

Φ(1) = −(qE)0 + α(B2)′0 = −q0E0 + 2αB0B
′
0

Φ(2) = −(qE0)
′
0 + α(B2)′′0

= −(q′0E0 + q0E
′
0) + 2α(B′2

0 +B0B
′′
0 )

Φ(3) = −(qE0)
′′
0 + α(B2)′′′0

= −(q′′0E0 + 2q′0E
′
0 + q0E

′′
0 ) + 2α(3B′

0B
′′
0 +B0B

′′′
0 ) ,

(3)
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and so forth. Obviously, Φext = Φ−Mgz. The (vertical) force balance equation ∂Φext/∂z =

0, viz.

Mg = q0E0 − 2αB0B
′
0 ,

is satisfied at equilibrium.

III. DISCRETE EQUATIONS OF MOTION

Assuming small displacements from equilibrium, one may Taylor expand the interaction

potential energy U(r) around the equilibrium inter-grain distance lr0 = |n−m|r0 (between

l−th order neighbors, l = 1, 2, ...), i.e. around δxn ≈ 0 and δzn ≈ 0, viz.

U(rnm) =
∞
∑

l′=0

1

l′!

dl′U(r)

drl′

∣

∣

∣

∣

r=l |n−m|r0

(xn − xm)l′ ,

where l′ denotes the degree of nonlinearity involved in its contribution: l′ = 1 is the linear

interaction term, l′ = 2 stands for the quadratic potential nonlinearity, and so forth. Notice

that the inter-grain distance r = [(xn − xm)2 + (zn − zm)2]1/2 also needs to be expanded,

i.e. near |xn − xm| = lr0 and zn − zm = 0, so that ∂U(r)/∂xj = (∂U(r)/∂r)(∂r/∂xj) ≈ ....

Obviously, δxn = xn − x(0)
n and δzn = zn − z(0)

n denotes the displacement of the n−th

grain from the equilibrium position (x(0)
n , z(0)

n ) = (nr0, 0). Retaining only nearest-neighbor

interactions (l = 1), we obtain the coupled equations of motion

d2(δxn)

dt2
+ ν

d(δxn)

dt
= ω2

0,L (δxn+1 + δxn−1 − 2δxn)

−a20

[

(δxn+1 − δxn)2 − (δxn − δxn−1)
2
]

+ a30

[

(δxn+1 − δxn)3 − (δxn − δxn−1)
3
]

+ a02

[

(δzn+1 − δzn)2 − (δzn − δzn−1)
2
]

−a12

[

(δxn+1 − δxn)(δzn+1 − δzn)2 − (δxn − δxn−1)(δzn − δzn−1)
2
]

,

(4)

and

d2(δzn)

dt2
+ ν

d(δzn)

dt
= ω2

0,T (2δzn − δzn+1 + δzn−1) − ω2
g δzn

−K1 (δzn)2 − K2 (δzn)3 +
a02

r0

[

(δzn+1 − δzn)3 − (δzn − δzn−1)
3
]

+ 2 a02

[

(δxn+1 − δxn)(δzn+1 − δzn) − (δxn − δxn−1)(δzn − δzn−1)
]

− a12

[

(δxn+1 − δxn)2(δzn+1 − δzn) − (δxn − δxn−1)
2(δzn − δzn−1)

]

, (5)
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where we have defined the longitudinal/transverse oscillation characteristic frequencies

ω2
0,L = U ′′(r0)/M , ω2

0,T = −U ′(r0)/(Mr0) , (6)

(both assumed to be positive for any given form of interaction potential U) and the quantities

a20 = −
1

2M
U ′′′(r0) , a02 = −

1

2Mr2
0

[U ′(r0) − r0U
′′(r0)] ,

a30 =
1

6M
U ′′′′(r0) , a12 = −

1

Mr3
0

[U ′(r0) − r0U
′′(r0) + r2

0

1

2
U ′′′(r0)] , (7)

which are related to coupling nonlinearities. The gap frequency ωg and the nonlinearity

coefficients K1 and K2 are related to the form of the sheath environment (i.e. the potential

Φ) via

ω2
g = Φ(2)/M , K1 = Φ(3)/(2M) , K2 = Φ(4)/(6M) . (8)

Obviously, the prime denotes differentiation, viz. U ′′(r0) = d2U(r)/dr2|r=r0
and so on.

In the above equations of motion, we have distinguished the linear contributions of the

first neighbors from the nonlinear ones, i.e. the first line in the right–hand–side from the

remaining ones, in both equations. Note that all of the coefficients are defined in such a way

that they bear positive values for Debye–type interactions, i.e. if UD(r) = (q2/r) exp(−r/λD)

(λD is the effective Debye length) since odd/even derivatives are then negative/positive;

however, the sign of these coefficients is not a priori prescribed for a different interaction

potential U(r). Indeed, we insist on expressing all formulae in such a manner that a different

interaction law may easily be assumed in a “plug–in” manner; in particular, even though the

Debye potential UD is widely accepted in DP crystal models, we think of the modification

of U when one takes into account a magnetic field [4] or the ion flow towards the negative

electrode [7]. Nevertheless, we provide the explicit form of the coefficients aij defined above

for a Debye potential, for clarity, in the Appendix.

Upon careful inspection of the discrete equations of motion above, one notices that the

lowest order nonlinearity in the longitudinal motion is due to the intergrain interaction

law, while nonlinearity in the vertical motion is primarily induced by the coupling to the

horizontal component (and, to less extent, by interactions).
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IV. CONTINUUM APPROXIMATION

Adopting the standard continuum approximation, we may assume that only small dis-

placement variations occur between neighboring sites, i.e.

δxn±1 ≈ u± r0
∂u

∂x
+

1

2
r2
0

∂2u

∂x2
±

1

3!
r3
0

∂3u

∂x3
+

1

4!
r4
0

∂4u

∂x4
± ...,

where the (horizontal) displacement δxn(t) is now expressed via a continuous function u =

u(x, t). The analogous continuous function w = w(x, t) is defined for δzn(t).

One may now proceed by inserting this ansatz in the discrete equations of motion (4, 5),

and carefully evaluating the contribution of each term. The calculation, quite tedious yet

perfectly straightforward, leads to a set of coupled continuum equations of motion in the

form

ü + ν u̇− c2L uxx −
c2L
12
r2
0 uxxxx = − 2 a20 r

3
0 ux uxx + 2 a02 r

3
0 wxwxx

− a12 r
4
0 [(wx)

2 uxx + 2wxwxxux] + 3 a30 r
4
0 (ux)

2 uxx , (9)

ẅ + ν ẇ + c2T wxx +
c2T
12
r2
0 wxxxx + ω2

g w = −K1w
2 − K2w

3

+ 2 a02 r
3
0 (uxwxx + wx uxx)

+ 3 a02 r
3
0 (wx)

2wxx − a12 r
4
0 [(ux)

2wxx + 2uxuxxwx] , (10)

where higher-order nonlinear terms were omitted. We have defined the characteristic ve-

locities cL = ω0,L r0 and cT = ω0,T r0; the subscript x denotes partial differentiation, so

that ux uxx = (u2
x)x/2 and (ux)

2 uxx = (u3
x)x/3. Remember that the gap frequency ωg and

the coefficients K1 and K2 are related to the form of the sheath electric and/or magnetic

potential via (8) above, viz. Fel = M g −M ω2
g z −K1 z

2 −K2 z
3.

V. RELATION TO PREVIOUS RESULTS - DISCUSSION

As a matter of fact, all known older results are based on equations which are readily

recovered, as special cases, from Eqs. (4) and (5) and/or their continuum counterparts (9)

and (10). In particular, the coupled Eqs. (1) and (2) in Ref. [8] are exactly recovered from

(4) and (5), upon neglecting a30, a12, K1 and K2 and then evaluating all coefficients for a

Debye–type potential.
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Upon switching off the coupling (i.e. setting w → 0), Eq. (9) above recovers exactly the

nonlinear Eq. (13) in Ref. [10], which was therein shown to model (nonlinear) longitudinal

dust grain motion in terms of (either Korteweg-de Vries– [3, 9] or Boussinesq–type) solitons;

also see Eq. (2) in [11] (treating the formation of asymmetric envelope modulated LDLWs)

and Eq. (2) in [12] (keep only first-neighbor interactions therein, to compare). In a similar

manner, considering purely transverse motion (i.e. setting u→ 0) Eqs. (5) and (10) herein

recover exactly the nonlinear Eqs. (7) and (8) in Ref. [13], where they were shown to model

the amplitude modulation of TDLWs which is due to the sheath nonlinearity. Finally,

needless to say, the linear limit recovers exactly the known equations of motion for either

purely longitudinal or purely transverse motion (i.e. considering aij = Kj = 0, ∀ i, j).

An exact treatment of the coupled evolution Eqs. (4, 5) – or, at least, the continuum

system (9, 10) – seems quite a complex task to accomplish. Even though Eq. (9) may

straightforward be seen as a Boussinesq–type equation [10], which is now modified by the

coupling, its transverse counterpart (10) (for u → 0, say) substantially differs from any

known nonlinear model equation, bearing known exact solutions. Therefore, we shall limit

ourselves to reporting this system of evolution equations, for the first time, thus keeping a

more thorough investigation (analytical and/or numerical) of their fully nonlinear regime

for a later report.
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VI. COUPLED-MODE MODULATED WAVE PACKETS

In order to gain some insight regarding the influence of the mode–coupling on the non-

linear profile of the dust lattice waves, we may consider the effects which come into play

when the amplitude of the LDLWs and the TDLWs – which are initially uncoupled in the

small amplitude (linear) limit – is increased to a slightly finite (i.e. non negligible) value,

thus allowing for a weak coupling between the two modes and a tractable appearance of the

signature of the (weak) nonlinearity in the dynamics.

The standard way for such an approach is via the introduction of multiple space and

time scales, viz. X0, X1, X2, ... and T0, T1, T2, ..., where Xn = εnx and Tn = εnt (ε � 1

is a smallness parameter). The solutions are expanded as: u = εu1 + ε2u2 + ... (plus an

analogous expression for w). The technical details of the calculation are described e.g. in

[11] and will be omitted here. We shall apply this reductive perturbation technique to the

system obtained from Eqs. (9, 10) by keeping only the lowest-order nonlinear terms (i.e.

omitting the last line in both equations); we set p0 = 2a20r
3
0 and h0 = 2a02r

3
0 for simplicity.

Note the inevitable (and qualitatively expected) complication of the calculation due to the

different dispersion laws in the two modes [14].

The first-order (∼ ε) equations are uncoupled and may be solved by assuming {u1, w1} =

{ψ
(0)
L , ψ

(0)
T } +[{ψL, ψT} exp i(kx − ωt) + c.c.] (complex conjugate). Upon substitution, we

obtain ψ
(0)
T = 0; the remaining (3) amplitudes are left arbitrary. This readily yields the

known dispersion relations

ω2
L + iνωL = c2Lk

2
(

1 −
k2r2

0

12

)

, ω2
T + iνωT = ω2

g − c2Tk
2
(

1 −
k2r2

0

12

)

, (11)

for the (acoustic) LDL and the (optical-like) TDL mode respectively.

The 2nd-order (∼ ε2) equations contain secular (1st-harmonic forcing) terms, whose elim-

ination imposes a pair of conditions in the form: ∂Ψj/∂T1 + vg,j ∂Ψj/∂X1 = 0 (where

j ∈ {1, 2} ≡ {L, T} in the following), implying that the amplitudes Ψj travel at the (differ-

ent) group velocities vg,j ≡ ∂ωj(k)/∂k. See that vg,T = ωT
′(k) < 0 (the TDLW is a backward

wave), as immediately obtained from (11b). The remaining system is then solved for the 0th

and the 2nd harmonic amplitudes (in ε2) [14]; the solution finally obtained is of the form:

δxn(t) ≈ u(x, t) ≈ ε[ψ0 + ψ1 exp i(kx− ω1t) + c.c.] + ε2 u
(2)
2 exp 2i(kx− ω1t) + c.c.] + O(ε3)

δzn(t) ≈ w(x, t) ≈ ε[ψ2 exp i(kx− ω2t) + c.c.] + ε2 {w
(0)
2 + [w

(2)
2 exp 2i(kx− ω2t) + c.c.]} + O(ε3) .
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We henceforth denote the significant amplitudes u
(0)
1 , u

(1)
1 and w

(1)
1 by Ψ0, Ψ1 and Ψ2 re-

spectively. The 2nd order correction amplitudes are

u
(2)
2 = ik3 p0Ψ

2
1 − h0Ψ

2
2

D
(L)
2

, w
(0)
2 = −

2K1

ω2
g

|Ψ1|
2 , w

(2)
2 = −

1

D
(T )
2

(

K1Ψ
2
2 + 2ih0k

3Ψ1Ψ2

)

,

(12)

where D
(L)
2 = −c2Lr

2
0k

4 + 2iνωL and D
(T )
2 = −3ω2

g + c2T r
2
0k

4 + 2iνωT . The contributions u
(1)
2 ,

w
(1)
2 and u

(0)
2 are left arbitrary by the algebra and were thus set to zero.

Proceeding to the 3rd-order (∼ ε3) equations, the elimination of the secular terms together

with zeroth order equations provide three explicit conditions, for Ψ0,1,2. After some tedious

algebra, these take the form

i
(

∂Ψ1

∂T2
+ vg,1

∂Ψ1

∂X2

)

+ P1
∂2Ψ1

∂X2
1

+ Q11 |Ψ1|
2Ψ1 + Q12 |Ψ2|

2Ψ1 + (Q0,1Ψ1 +Q0,2Ψ2)
∂Ψ0

∂X1
+H1 = 0

i
(

∂Ψ2

∂T2

+ vg,2
∂Ψ2

∂X2

)

+ P2
∂2Ψ2

∂X2
1

+ Q22 |Ψ2|
2Ψ2 + Q21 |Ψ1|

2Ψ2 +H2 = 0

(v2
g,1 − c2L)

∂Ψ0

∂X1

= −p0k
2|Ψ1|

2 + h0k
2|Ψ2|

2 + C , (13)

where C is an integration constant (to be determined by the boundary conditions). The

linear dispersion terms Pj are related to the (curvature of) the dispersion relations (11) as

Pj = ωj
′′(k) (j = 1, 2); the group velocities vg,j were defined above [15]. The nonlinearity

coefficients Qij (i = 0, 1, 2, j = 1, 2) and the ‘peculiar’ contributions Hj (involving cross-

terms in Ψ2
i Ψ

∗
j ) are too lengthy to report here [14]. Observe that, once C is determined, one

may cast Eqs. (13) into the form of a (modified, asymmetric) system of coupled nonlinear

Schrödinger equations (CNLSE). Note that we have avoided the usual envelope (Galilean)

transformation {x, t} → {x − vg,jt, t}, since it does not simplify this (asymmetric, with

respect to 1 ↔ 2) system. Finally, let us point out, for rigor, that the results in [11] and

[16] are exactly recovered, from both (12) and (13), in the appropriate – uncoupled mode –

limits (namely, Ψ2 → 0 and Ψ1 → 0, respectively, for LDLWs and TDLWs).

Despite the obvious analytical complication, the physical mechanism underlying the above

results is rather transparent. There is an energy pumping effect between the zeroth-harmonic

longitudinal (displacement) mode Ψ0, first put forward in [11] (for LDLWs, yet long known in

solid state physics [17]) and the modulated (low-frequency) LDL and (high-frequency) TDL

mode(s). Note the strong misfit (asymmetry) between the dispersion laws dominating the

coupled modes, despite which – regretfully – no simplifying assumption may be analytically

carried out in this continuum model.
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VII. CONCLUSION

We have put forward a comprehensive nonlinear model for coupled longitudinal-to-

transverse displacements in a horizontal dust mono-layer, levitated in a sheath under the

influence of gravity and an electric and/or magnetic field. All of the above results are

generic, i.e. valid for any assumed form of the inter-grain interaction potential U(r) and the

sheath potential Φ, and will hopefully contribute to the elucidation of the grain oscillatory

dynamics in dust crystals.

Appendix: Form of the coefficients for the Debye interaction potential

Consider the Debye potential (energy) UD(r) = qφD(r) = q2 e−r/λD/r. Defining the

(positive real) lattice parameter κ = r0/λD, one straightforward has

U ′
D(r0) = −

q2

λ2
D

e−κ 1 + κ

κ2
, U ′′

D(r0) = +
2q2

λ3
D

e−κ 1 + κ + κ2

2

κ3
,

U ′′′
D (r0) = −

6q2

λ4
D

e−κ 1 + κ+ κ2

2
+ κ3

6

κ4
, U ′′′′

D (r0) = +
24q2

λ5
D

e−κ 1 + κ + κ2

2
+ κ3

6
+ κ4

24

κ5
,

where the prime denotes differentiation and l = 1, 2, 3, ... is a positive integer. Now, com-

bining with definitions (6, 7), we have:

ω2
L,0 =

2q2

Mλ3
D

e−κ 1 + κ+ κ2/2

κ3
≡ c2L/(κ

2λ2
D) , ω2

T,0 =
q2

Mλ3
D

e−κ 1 + κ

κ3
≡ c2T/(κ

2λ2
D) ,

p0 ≡ 2a20κ
3λ3

D =
6q2

MλD
e−κ

(

1

κ
+1+

κ

2
+
κ2

6

)

, h0 ≡ 2a02κ
3λ3

D =
3q2

MλD
e−κ

(

1

κ
+1+

κ

3
,
)

a30 =
q2

6Mλ5
D

e−κ 1

κ5

(

κ4+4κ3+12κ2+24κ+24
)

, a12 =
q2

2Mλ5
D

e−κ 1

κ5

(

κ3+5κ2+12κ+12
)

.

Of course, all known previous definitions of (some of) these coefficients (for nearest neighbour

interactions; see in the references cited in the text) are exactly recovered. Note, finally, that

κ is of the order of (or slightly higher than) unity in experiments; therefore, all coefficients

turn out to be of similar order of magnitude, as one may check numerically.
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