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Abstract

A comprehensive analytical theory for nonlinear excitations related to horizontal (longitudinal,

acoustic mode) as well as vertical (transverse, optical mode) motion of charged dust grains in a dust

crystal is presented. Different types of localized excitations, similar to those well known in solid

state physics, are reviewed and conditions for their occurrence and characteristics in dusty plasma

crystals are discussed. By employing a continuum approximation (i.e. assuming a long variation

scale, with respect to the inter-particle distance) a dust crystal is shown to support nonlinear

kink-shaped supersonic solitary excitations, associated with longitudinal dust grain displacement,

as well as modulated envelope localized modes associated with either longitudinal or transverse

oscillations. Although a one-dimensional crystal is considered for simplicity, the results in principle

apply to a two-dimensional lattice if certain conditions are satisfied. The effect of mode-coupling is

also briefly considered. The relation to previous results on atomic chains, and also to experimental

results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.
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I. INTRODUCTION

Dust contaminated plasmas (dusty plasmas, DP) have been attracting significant interest

recently. Particularly important are dust quasi-lattices, which are typically formed in the

sheath region above the negative electrode in discharge experiments, horizontally suspended

at a levitated equilibrium position at z = z0, where gravity and electric (and/or magnetic)

forces balance. The linear regime of low-frequency oscillations in DP crystals, in the longitu-

dinal (acoustic mode) and transverse (in-plane, shear acoustic mode and vertical, off-plane

optical mode) direction(s), is now quite well understood. However, the nonlinear behaviour

of DP crystals is still mostly unexplored, and has lately attracted experimental [1 - 3] and

theoretical [1 - 9] interest.

Recently [5], we considered the coupling between the horizontal (∼ x̂) and vertical (off-

plane, ∼ ẑ) degrees of freedom in a dust mono-layer; a set of nonlinear equations for longi-

tudinal and transverse dust lattice waves (LDLWs, TDLWs) was thus rigorously derived [5].

Here, we review the nonlinear dust grain excitations which may occur in a DP crystal (here

assumed quasi-one-dimensional and infinite, composed from identical grains, of equilibrium

charge q and mass M , located at xn = n r0, n ∈ N ). Ion-wake and ion-neutral interac-

tions (collisions) are omitted, at a first step. This study complements recent experimental

investigations [1-3] and may hopefully motivate future ones.
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II. TRANSVERSE ENVELOPE STRUCTURES.

The vertical (off-plane) n−th grain displacement δzn = zn − z0 in a dust crystal obeys

the equation [10, 11]

d2δzn

dt2
+ ν

d(δzn)

dt
+ ω2

T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2
g δzn + α (δzn)2 + β (δzn)3 = 0 . (1)

The characteristic frequency

ωT,0 = [−qU ′(r0)/(Mr0)]
1/2

is related to the interaction potential U(r) [e.g. for a Debye-Hückel potential: UD(r) =

(q/r) e−r/λD , one has

ω2
0,D = ω2

DL exp(−κ) (1 + κ)/κ3 , (2)

where ωDL = [q2/(Mλ3
D)]1/2 is the characteristic dust-lattice frequency scale; λD is the Debye

length; κ = r0/λD is the DP lattice parameter]. The gap frequency ωg and the nonlinearity

coefficients α, β are defined via the potential

Φ(z) ≈ Φ(z0) + M
[

1

2
ω2

gδz
2
n +

α

3
(δzn)3 +

β

4
(δzn)4

]

+ O[(δzn)5] (3)

(formally expanded near z0, taking into account the electric and/or magnetic field inhomo-

geneity and charge variations [12]), i.e. leading to an overall vertical force

F (z) = Fel/m(z) − Mg ≡ −∂Φ(z)/∂z ≈ −M [ω2
gδzn + α (δzn)2 + β (δzn)3] + O[(δzn)4] .

Recall that Fe/m(z0) = Mg.

Linear transverse dust-lattice excitations, viz. δzn ∼ cos φn (here φn = nkr0 − ωt) obey

the optical-like discrete dispersion relation [14]:

ω2 = ω2
g − 4ω2

T,0 sin2(kr0/2) ≡ ω2
T . (4)

The TDLW dispersion curve is depicted in Fig 2. Transverse vibrations propagate as a

backward wave [see that vg,T = ω′
T (k) < 0] – for any form of U(r) – cf. recent experiments

[2]. Notice the lower cutoff ωT,min = (ω2
g − 4ω2

T,0)
1/2 (at the edge of the Brillouin zone, at

k = π/r0), which is absent in the continuum limit. (for k � r−1
0 ).

Allowing for a slight departure from the small amplitude (linear) assumption, one obtains:

δzn ≈ ε (A eiφn + c.c.) + ε2
[

−
2|A|2

ω2
g

+
(

A2

3ω2
g

e2iφn + c.c.
)]

+ ... . (5)
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FIG. 1: The (anharmonic) sheath (a) force F (z), and (b) force potential V (z), depicted vs. the

vertical distance z from the negative electrode, in plasma discarge experiments; fig. from [13].

FIG. 2: The TDLW dispersion relation: frequency (square) ω2
T vs. wavenumber k.

Notice the generation of higher phase harmonics due to nonlinearity. The (slowly varying)

amplitude w
(1)
1 ≡ A[ε(x − vgt), ε

2t] obeys a nonlinear Schrödinger equation (NLSE) in the

form [7]:

i
∂A

∂T
+ P

∂2A

∂X2
+ Q |A|2 A = 0 , (6)

where {X, T} are the slow variables {ε(x− vgt), ε
2t}. The dispersion coefficient P is related

to the curvature of ω(k) as PT = ω′′
T (k)/2 is negative/positive for low/high values of k. The

nonlinearity coefficient

Q =
1

2ωT

(

10α2

3ω2
g

− 3 β
)

(7)
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is positive for all known experimental values of the anharmonicity coefficients α, β [3]. For

long wavelengths [i.e. k < kcr, where P (kcr) = 0], the theory [7] predicts that TDLWs will be

modulationally stable, and may propagate in the form of dark/grey envelope excitations (hole

solitons or voids ; see Fig. 3a,b). On the other hand, for k > kcr, modulational instability

may lead to the formation of bright (pulse) envelope solitons (see Fig. 3c). Analytical

expressions for these excitations can be found in [7]. It may be noted that the modulation
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FIG. 3: TDL envelope solitons of the (a) dark, (b) grey, and (c) bright type.

FIG. 4: Amplitude modulation of transverse dust lattice oscillations; simulation data provided in

the embedded caption; figure reprinted from [13].

of transverse dust oscillations clearly appears in numerical simulations [13]; see e.g Fig. 4.
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III. LONGITUDINAL ENVELOPE EXCITATIONS.

The longitudinal dust grain displacements δxn = xn −nr0 are described by the nonlinear

equation of motion [8, 10]:

d2(δxn)

dt2
+ ν

d(δxn)

dt
= ω2

0,L (δxn+1 + δxn−1 − 2δxn)

−a20 [(δxn+1 − δxn)2 − (δxn − δxn−1)
2] + a30 [(δxn+1 − δxn)3 − (δxn − δxn−1)

3] .(8)

The resulting linear mode [14] obeys the acoustic dispersion relation:

ω2 = 4ω2
L,0 sin2(kr0/2) ≡ ω2

L , (9)

where ωL,0 = [U ′′(r0)/M)]1/2; in the Debye case, ω2
L,0 = 2 ω2

DL exp(−κ) (1 + κ + κ2/2)/κ3.

The LDLW dispersion curve is depicted in Fig 5.

FIG. 5: The LDLW dispersion relation: frequency ωL vs. wavenumber k (solid curve). We have

also depicted: the continuous approximation (dashed curve) and the acoustic (tangent) curve at

the origin.

The multiple scales (reductive perturbation) technique (cf. above) now yields (∼ ε) a

zeroth-harmonic mode, describing a constant displacement, viz.

δxn ≈ ε [u
(1)
0 + (u

(1)
1 eiφn + c.c.)] + ε2 (u

(2)
2 e2iφn + c.c.) + ... .

The 1st-order amplitudes obey the coupled equations [6]:

i
∂u

(1)
1

∂T
+ PL

∂2u
(1)
1

∂X2
+ Q0 |u

(1)
1 |2u(1)

1 +
p0k

2

2ωL
u

(1)
1

∂u
(1)
0

∂X
= 0 , (10)

∂2u
(1)
0

∂X2
= −

p0k
2

v2
g,L − ω2

L,0r
2
0

∂

∂X
|u(1)

1 |2 , (11)
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where vg,L = ω′
L(k); {X, T} are slow variables (as above). The description involves the

definitions:

p0 = −r3
0U

′′′(r0)/M ≡ 2a20r
3
0

and

q0 = U ′′′′(r0)r
4
0/(2M) ≡ 3a30r

4
0

(both positive quantities of similar order of magnitude for Debye interactions; see in [4, 7]).

Eqs. (10), (11) may be combined into a closed equation, which is identical to Eq. (6) (for

A = u
(1)
1 , here). Now, here

P = PL = ω′′
L(k)/2 < 0 ,

while the form of Q > 0 (< 0) [8] prescribes stability (instability) at low (high) k. Enve-

lope excitations are now asymmetric, i.e. rarefactive bright or compressive dark envelope

structures (see Figs.).

FIG. 6: Bright LDL (asymmetric) envelope solitons: (a) the zeroth (pulse) and first harmonic

(kink) amplitudes; (b) the resulting asymmetric wavepacket.
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FIG. 7: (a) Grey and (b) dark LDL (asymmetric) modulated wavepackets.
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IV. LONGITUDINAL SOLITONS.

Equation (8) is identical to the equation of motion in an atomic chain with anharmonic

springs, i.e. in the celebrated FPU (Fermi-Pasta-Ulam) problem. Inspired by methods of

solid state physics, one may opt for a continuum description at a first step, viz. δxn(t) →

u(x, t). This may lead to different nonlinear evolution equations (depending on simplifying

assumptions), some of which are critically discussed in [9]. What follows is a summary of

the lengthy analysis carried out therein.

A. Modified KdV Equation

Keeping lowest order nonlinear and dispersive terms, the continuum variable u obeys [10]:

ü + ν u̇ − c2
L uxx −

c2
L

12
r2
0 uxxxx = − p0 ux uxx + q0 (ux)

2 uxx , (12)

where (·)x ≡ ∂(·)/∂x; cL = ωL,0 r0; p0 and q0 were defined above. Assuming near-sonic

propagation (i.e. v ≈ cL), and defining the relative displacement w = ux, one has

wτ − a w wζ + â w2 wζ + bwζζζ = 0 (13)

(for ν = 0), where a = p0/(2cL) > 0, â = q0/(2cL) > 0, and b = cLr2
0/24 > 0. Since the

original work of Melandsø [4], various studies have relied on the Korteweg - deVries (KdV)

equation, i.e. Eq. (13) for â = 0, in order to gain analytical insight in the compressive

structures observed in experiments [1]. Indeed, the KdV Eq. possesses negative (only, here,

since a > 0) supersonic pulse soliton solutions for w, implying a compressive (anti-kink)

excitation for u; the KdV soliton is thus interpreted as a density variation in the crystal,

viz. n(x, t)/n0 ∼ −∂u/∂x ≡ −w. Also, the pulse width L0 and height u0 satisfy u0L
2
0 = cst.,

a feature which is confirmed by experiments [1]. Now, here’s a crucial point to be made

(among others [9]): in a Debye crystal, â ≈ 2a roughly (for κ ≈ 1), so the KdV approximation

(i.e. assuming â ≈ 0) is not valid. Instead, one may employ the extended KdV Eq. (eKdV)

(13), which accounts for both compressive and rarefactive lattice excitations (see expressions

in [9]; also cf. Fig. 4).
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FIG. 8: Solutions of the extended KdV Eq. (for q0 > 0; dashed curves) vs. those of the KdV Eq.

(for q0 = 0; solid curves): (a) relative displacement ux; (b) grain displacement u.

B. Generalized Boussinesq description

Alternatively, Eq. (12) can be reduced to a Generalized Boussinesq (GBq) Equation

ẅ − v2
0 wxx = h wxxxx + p (w2)xx + q (w3)xx (14)

(w = ux; p = −p0/2 < 0, q = q0/3 > 0); again, for q ∼ q0 = 0, one recovers a Boussinesq

(Bq) equation, e.g. widely studied in solid chains. As physically expected, the GBq (Bq)

equation yields, like its eKdV (KdV) counterpart, both compressive and rarefactive (only

compressive) solutions; however, the (supersonic) propagation speed v now does not have

to be close to cL. A detailed comparative study of (and exact expressions for) all of these

soliton excitations can be found in [9].

V. CONCLUSIONS.

Concluding, we have reviewed recent results on nonlinear excitations (solitary waves)

occurring in a (1d) dust mono-layer. Modulated envelope TDL and LDL structures occur,

due to sheath and coupling nonlinearity. Both compressive and rarefactive longitudinal

excitations are predicted and may be observed by appropriate experiments.
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