
Envelope localized modes
in electrostatic plasma waves

Ioannis Kourakis 1 and Padma Kant Shukla 2

Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr–Universität Bochum, D–44780 Bochum, Germany

email: 1 ioannis@tp4.rub.de , 2 ps@tp4.rub.de

1. Introduction

Modulational instability (MI), a well-known mechanism of energy
localization dominating wave propagation in nonlinear dispersive
media, has been widely investigated in the past, with respect to
plasma electrostatic modes, e.g. ion-acoustic waves (IAW), and
experiments have confirmed those studies [1].
The purpose of this study is to provide a generic methodologi-
cal framework for the study of the nonlinear (self-)modulation of
the amplitude of such electrostatic modes, a mechanism known
to be associated with harmonic generation and the formation
of localized envelope modulated wave packets , such as the ones
abundantly observed during laboratory experiments and satellite
observations, e.g. in the Earth’s magnetosphere:
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Figure 1. Satellite observations of modulation phenomena: (a) Cluster data,

from O. Santolik et al., J. Geophys. Res. 108, 1278 (2003); (b) FAST data,

from R. Pottelette et al., Geophys. Res. Lett. 26 (16) 2629 (1999); (c), (d)

from Ya. Alpert, Phys. Reports 339, 323 (2001).

2. The model: a generic description

In general, several known electrostatic plasma modes [2] consist of
propagating oscillations of one dynamical plasma constituent, say
α (massmα, charge qα ≡ sαZαe; e is the absolute electron charge;
s = sα = qα/|qα| = ±1 is the charge sign),
against a background of one (or more) constituent(s):
α′ (mass mα′, charge qα′ ≡ sα′Zα′e, similarly); the latter is (are)

often assumed to obey a known distribution, e.g. being in a fixed
(uniform): nα′ = const. or in a thermalized (Maxwellian) state

ni ≈ nα′,0 e
−qα′Φ/kBTα′ (Tα′: temperature, of species α′ = e, i, ...)

for simplicity, depending on the particular aspects (e.g. frequency
scales) of the physical system considered.
For instance,
— the ion-acoustic (IA) mode refers to ions (α = i) oscillating
against a Maxwellian electron background (α′ = e),
— the electron-acoustic (EA) mode refers to electron oscillations
(α = e) against a fixed ion background (α′ = i),
and so forth [2].
The standard (single) fluid model for the inertial species α provides
the moment evolution equations:

∂n

∂t
+∇ · (nu) = 0 ,

∂u

∂t
+ u · ∇u = −s∇φ− σ

n
∇p ,

∂p

∂t
+ u · ∇p = −γ p∇ · u ; (1)

also
∇2φ = φ− αφ2 + α′ φ3 − s β (n− 1) ; (2)

i.e. Poisson’s Eq.: ∇2Φ = −4π
∑
qα nα, close to equilibrium.

Overall neutrality is assumed at equilibrium:∑
qα nα,0 = −ne,0 + Zini,0 + ... = 0 .

We have defined the reduced (dimensionless) quantities:
- particle density : n = nα/nα,0;

- mean (fluid) velocity : u = [mα/(kBT∗)]
1/2ud ≡ uα/c∗;

- dust pressure: p = pα/p0 = pα/(nα,0kBT∗);
- electric potential : φ = ZαeΦ/(kBT∗) = |qα|Φ/(kBT∗);
- γ = (f + 2)/f = CP/CV (for f degrees of freedom).
Also, time and space are scaled over:
- t0, e.g. the inverse DP plasma frequency

ω−1
p,α = (4πnα,0q

2
α/mα)−1/2

and
- r0 = c∗t0, e.g. an effective Debye length

λD,eff = (kBT∗/mαω
2
p,α)1/2

.
- The dimensionless parameters α, α′ and β appearing in (2) should
be determined exactly for any specific problem. They incorporate
all the essential dependence on the plasma parameters.
Finally, σ = Tα/(nd,0kBT∗) is the temperature (ratio).

3. Multiple scales (reductive) perturbation method.

Let S be the state (column) vector (n, u, p, φ)T ;

the equilibrium state is S(0) = (1, 0, 1, 0)T .
We shall consider small deviations by taking (ε� 1)

S = S(0) + εS(1) + ε2 S(2) + ... = S(0) +

∞∑
n=1

εnS(n) .

We define the stretched (slow) space and time variables [3, 4]: ζ =
ε(x− λ t) , τ = ε2 t (λ ∈ <); the (fast) carrier phase is θ1 =
k · r − ωt (arbitrary propagation direction), while the harmonic
amplitudes vary slowly along x:

Sj(n) =

∞∑
l=−∞

S
(n)
j,l (ζ, τ ) eil(k·r−ωt)

(S
(n)
j,−l = S

(n)
j,l

∗
); wavenumber k is (kx, ky) = (k cos θ, k sin θ).

→ oblique modulation!

Substituting into (2), one obtains, successively (details in [5]):
- the first harmonics of the perturbation:

n
(1)
1 = s

1 + k2

β
φ

(1)
1 =

1

γ
p
(1)
1 =

1

ω
k · u(1)

1 =
k

ω cos θ
u

(1)
1,x , (3)

- the compatibility condition (dispersion relation):

ω2 =
β k2

k2 + 1
+ γ σ k2 , (4)

- the 2nd order contributions: S
(2)
0,1,2: → harmonic generation !!!

- the compatibility condition, for n = 2, l = 1:

λ = vg(k) =
∂ω

∂kx
= ω′(k) cos θ =

k

ω

[
1

(1 + k2)2
+ γσ

]
cos θ ;

λ is therefore the group velocity in the modulation (x−) direction.

4. Derivation of the Nonlinear Schrödinger Equation

Proceeding to order ∼ ε3, the equations for l = 1 yield an explicit
compatibility condition i.e. the Nonlinear Schrödinger Equation

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0 . (5)

— Dispersion coefficient P = 1
2
∂2ω
∂k2

x
= 1

2

[
ω′′(k) cos θ+ω′(k)sin2 θ

k

]
;

P is related to the curvature of the dispersion curve (4).

— Nonlinearity coefficient Q =
∑4
j=0Qj, due to carrier wave

self-interaction;
— Q0/2 are due to the 0th/2nd order harmonics,

— Q1 is related to the cubic term in (2),
— Q3/4 are due to the temperature effect (via σ).

An expression for Q (too lengthy !) can be found in detail in [5].

5. Modulational stability analysis

Linearizing around the monochromatic solution of Eq. (5): ψ =

ψ̂ eiQ|ψ̂|
2τ + c.c. i.e. setting ψ̂ = ψ̂0 + ε ψ̂1,0 e

i(k̂ζ−ω̂τ ), we obtain
the (perturbation) dispersion relation:

ω̂2 = P 2 k̂2
(
k̂2 − 2

Q

P
|ψ̂1,0|2

)
.

The wave will be stable (∀ k̂) if the product PQ is negative.

For positive PQ > 0, instability sets in for k̂cr =
√

2QP |ψ̂1,0|;
the instability growth rate σ = |Imω̂(k̂)|, reaches its maximum
value σmax = |Q| |ψ̂1,0|2 for k̂ = k̂cr/

√
2.

6. Localized envelope excitations

We finally obtain a localized modulated wave packet in the form:

ψ = εψ0 cos(kx− ωt + Θ)

[+O(ε2)], where the slowly varying amplitude ψ0(εx, εt) and
phase correction Θ(εx, εt) are determined by (solving) Eq. (5)
for ψ = ψ0 exp(iΘ) (see [6] for details).

→ Bright-type solitons (pulses) for PQ > 0:

ψ0 =

(
2P

QL2

)1/2

sech

(
X − ve T

L

)
, Θ =

1

2P

[
veX+

(
Ω−v

2
e

2

)
T

]
(6)

where
– ve is the envelope velocity;
– L is the pulse’s spatial width;
– L and Ω is the pulse’s time oscillation (at rest) frequency ;

– L and ψ0 satisfy Lψ0 = (2P/Q)1/2 = constant;
– the maximum amplitude ψ0 is independent from the velocity ve;
[cf. the Korteweg-deVries (KdV) solitons, where L2ψ0 = const.
and ψ0 grows with v].

Figure 2. Bright type (pulse) soliton solution of the NLS equation, for two

different parameter sets (PQ > 0).

→ Dark/grey type solitons (holes) for PQ < 0:

ψ0 = ±ψ′0 tanh

(
X − ve T

L′

)
, Θ =

1

2P

[
veX+

(
2PQA2

0−
v2
e

2

)
T

]
(7)

(see Fig. 2a); again, L′ψ′0 = (2|P/Q|)1/2 (=cst.).
The grey envelope reads [6]:

ψ0 = ψ′′0 {1− d2 sech2{[X − ve T ]/L′′}}1/2 , (8)

Θ =
1

2P

[
V0X −

(
1

2
V 2

0 − 2PQψ′′20

)
T + Θ0

]
−S sin−1 d tanh

(X−ve T
L′′

)
[
1− d2 sech2

(
X−ve T
L′′

)]1/2
. (9)

Here
– Θ0 is a constant phase;
– S denotes the product S = sign(P ) × sign(ve − V0);

– The pulse width L′′ satisfies L′′ = (|P/Q|)1/2/(dψ′′0)
– 0 < d ≤ 1; the real parameter d is given by:

d2 = 1 + (ve − V0)
2/(2PQψ′′20) ≤ 1 ;

– V0 = const. ∈ < satisfies:

V0 −
√

2|PQ|ψ′′20 ≤ ve ≤ V0 +

√
2|PQ|ψ′′20 .

For d = 1 (thus V0 = ve), one recovers the dark envelope soliton
(cf. above).

Figure 3. Soliton solutions of the NLS equation for PQ < 0 (holes); these

excitations are of the: (a) dark type, (b) grey type. Notice that the amplitude

never reaches zero in (b).

So, the essential conclusion to retain is:
- PQ > 0: Unstable linear wave, bright-type excitations;

- PQ < 0: Stable linear wave, dark/grey-type excitations.
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