22nd Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2004), 23 - 27 August 2004 Tara National Park, Serbia and Montenegro

Nonlinear Modulated Envelope Electrostatic Wavepacket Propagation in Space and Laboratory Plasmas Ioannis KOURAKIS & Padma Kant SHUKLA

> R.U.B. Ruhr-Universität Bochum Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie D–44780 Bochum, Germany

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Outline

Introduction

- Amplitude Modulation: a rapid overview of notions and ideas;
- Relevance with space and laboratory plasmas;
- Intermezzo: Dusty Plasmas (or Complex Plasmas).
- The model: electrostatic wave description and formalism
 A pedagogical paradigm: Ion-acoustic waves (IAWs);
 Other examples: EAWs, DAWs, ...
- □ The reductive perturbation (multiple scales) technique.
- □ Harmonic generation and Modulational Instability (MI).
- □ *Envelope excitations*: theory and characteristics.

Conclusions.

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

1. Intro. The mechanism of wave amplitude modulation The **amplitude** of a harmonic wave may vary in space and time:

1. Intro. The mechanism of wave amplitude modulation The **amplitude** of a harmonic wave may vary in space and time:

This *modulation* (due to nonlinearity) may be *strong* enough to lead to wave *collapse* or ...

1. Intro. The mechanism of wave amplitude modulation The **amplitude** of a harmonic wave may vary in space and time:

This *modulation* (due to nonlinearity) may be *strong* enough to lead to wave *collapse* or to the formation of *envelope solitons*:

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)])

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

..., in satellite (e.g. CLUSTER, FAST, ...) observations:

Figure 2. Left: Wave form of broadband noise at base of AKR source. The signal consists of highly coherent (nearly monochromatic frequency of trapped wave) wave packets. Right: Frequency spectrum of broadband noise showing the electron acoustic wave (at ~ 5 kHz) and total plasma frequency (at ~ 12 kHz) peaks. The broad LF maximum near 300 Hz belongs to the ion acoustic wave spectrum participating in the 3 ms modulation of the electron acoustic waves.

(*) From: O. Santolik *et al.*, *JGR* **108**, 1278 (2003); R. Pottelette *et al.*, *GRL* **26** 2629 (1999). www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf *Int. Symposium on the Physics of Ionized Gases (SPIG 2004)*

Modulational instability (MI) was observed in simulations, e.g. early (1972) numerical experiments of EM cyclotron waves:

FIG. 2. Spatial variation of the y component of the wave magnetic field $B_y(x)$ (solid curve) and the magnitude of the total field |B(x)| (thin curve) at different time of evolution for cases 1 (left) and 2 (right). Note the harmonic generation in |B(x)| and the sudden collapse of the wave:

[from: A. Hasegawa, PRA 1, 1746 (1970); Phys. Fluids 15, 870 (1972)].

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Spontaneous MI has been observed in experiments,:

e.g. on ion acoustic waves

[from: Bailung and Nakamura, J. Plasma Phys. 50 (2), 231 (1993)].

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

How can one describe the (slow) evolution (*modulation*) of plasma waves' *amplitudes* in space and time?

- How can one describe the (slow) evolution (*modulation*) of plasma waves' *amplitudes* in space and time?
- Can Modulational Instability (MI) of plasma modes be predicted by a simple, tractable analytical model?

- How can one describe the (slow) evolution (*modulation*) of plasma waves' *amplitudes* in space and time?
- Can Modulational Instability (MI) of plasma modes be predicted by a simple, tractable analytical model?
- Can envelope modulated localized structures (such as those observed in space and laboratory plasmas) be modeled by an exact theory?

- How can one describe the (slow) evolution (*modulation*) of plasma waves' *amplitudes* in space and time?
- Can Modulational Instability (MI) of plasma modes be predicted by a simple, tractable analytical model?
- Can envelope modulated localized structures (such as those observed in space and laboratory plasmas) be modeled by an exact theory?
- Focus: electrostatic waves; e.g. ion acoustic (IA), electron acoustic (EA), dust acoustic (DA) waves, ...

Intermezzo: DP – Dusty Plasmas (or Complex Plasmas): definition and characteristics of a focus issue

□ Ingredients:

- electrons e^- (charge -e, mass m_e),
- ions i^+ (charge $+Z_i e$, mass m_i), and
- charged micro-particles \equiv dust grains d (most often d⁻): charge $Q = \pm Z_d e \sim \pm (10^3 - 10^4) e$, mass $M \sim 10^9 m_p \sim 10^{13} m_e$, radius $r \sim 10^{-2} \mu m$ up to $10^2 \mu m$.

Origin: Where does the dust come from?

- Space: cosmic debris (silicates, graphite, amorphous carbon), comet dust, man-made pollution (Shuttle exhaust, satellite remnants), ...
- □ Atmosphere: extraterrestrial dust (meteorites): $\geq 2 \cdot 10^4$ tons a year (!)(*), atmospheric pollution, chemical aerosols, ...
- Fusion reactors: plasma-surface interaction, carbonaceous particulates resulting from wall erosion-created debris (graphite, CFCs: Carbon Fiber Composites, ...)
- Laboratory: (man-injected) melamine-formaldehyde particulates (**) injected in *rf* or *dc* discharges; 3d (= multiple 2d layers) or 1d (by appropriate experimental setting) crystals.

Sources: [P. K. Shukla & A. Mamun 2002], (*) [DeAngelis 1992], (**) [G. E. Morfill *et al.* 1998] www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

The standard recipe involves the following ingredients:

- A *dynamical constituent* (particle species) α ;

The standard recipe involves the following ingredients:

- A *dynamical constituent* (particle species) α ; - a *neutralizing background* of (*one or several*) species α' (in a – presumably – *known* state).

The standard recipe involves the following ingredients: – A dynamical constituent (particle species) α ; – a neutralizing background of (one or several) species α' (in a – presumably – known state).

Typical paradigm (cf. textbooks) to *focus* upon: – Ion acoustic waves (IAW): ions ($\alpha = i$) in a background of thermalized electrons ($\alpha' = e$): $n_e = n_{e,0} e^{e\Phi/K_B T_e}$.

The standard recipe involves the following ingredients: – A *dynamical constituent* (particle species) α ; – a *neutralizing background* of (*one or several*) species α' (in a – presumably – known state).

Typical paradigm (cf. textbooks) to *focus* upon: – lon acoustic waves (IAW): ions ($\alpha = i$) in a background of thermalized electrons ($\alpha' = e$): $n_e = n_{e,0} e^{e\Phi/K_B T_e}$.

The theory applies to a variety of other modes, including e.g.

- Electron acoustic waves (EAW): electrons ($\alpha = e$) in a background of *stationary* ions ($\alpha' = i$): $n_i = cst$.;

The standard recipe involves the following ingredients:

- A *dynamical constituent* (particle species) α ; - a *neutralizing background* of (*one or several*) species α' (in a – presumably – known state).

Typical paradigm (cf. textbooks) to *focus* upon: – Ion acoustic waves (IAW): ions ($\alpha = i$) in a background of thermalized electrons ($\alpha' = e$): $n_e = n_{e,0} e^{e\Phi/K_B T_e}$.

The theory applies to a variety of other modes, including e.g.

- Electron acoustic waves (EAW): electrons ($\alpha = e$) in a background of *stationary* ions ($\alpha' = i$): $n_i = cst$.;

- DAW: dust grains ($\alpha = d$) against thermalized electrons and ions ($\alpha' = e, i$): $n_e = n_{e,0} e^{e\Phi/K_B T_e}$, $n_i = n_{i,0} e^{-Z_i e\Phi/K_B T_i}$. www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

Density n_{α} (*continuity*) equation:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \, \mathbf{u}_{\alpha}) = 0$$

Density n_{α} (*continuity*) equation:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \,\mathbf{u}_{\alpha}) = 0$$

Mean velocity \mathbf{u}_{α} equation:

$$\frac{\partial \mathbf{u}_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla \mathbf{u}_{\alpha} = -\frac{q_{\alpha}}{m_{\alpha}} \nabla \Phi$$

[(*) Cold fluid model]

21

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

Density n_{α} (*continuity*) equation:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \,\mathbf{u}_{\alpha}) = 0$$

Mean velocity \mathbf{u}_{α} equation:

$$\frac{\partial \mathbf{u}_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla \mathbf{u}_{\alpha} = -\frac{q_{\alpha}}{m_{\alpha}} \nabla \Phi - \frac{1}{m_{\alpha} n_{\alpha}} \nabla p_{\alpha}$$

[(*) Cold vs. Warm fluid model]

Density n_{α} (*continuity*) equation:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \, \mathbf{u}_{\alpha}) = 0$$

Mean velocity \mathbf{u}_{α} equation:

$$\frac{\partial \mathbf{u}_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla \mathbf{u}_{\alpha} = -\frac{q_{\alpha}}{m_{\alpha}} \nabla \Phi - \frac{1}{m_{\alpha} n_{\alpha}} \nabla p_{\alpha}$$

Pressure p_{α} equation: [(*) Cold vs. Warm fluid model] $\frac{\partial p_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla p_{\alpha} = -\gamma p_{\alpha} \nabla \cdot \mathbf{u}_{\alpha}$

 $[\gamma = (f+2)/f = c_P/c_V$: ratio of specific heats e.g. $\gamma = 3$ for 1d, $\gamma = 2$ for 2d, etc.].

Density n_{α} (*continuity*) equation:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \, \mathbf{u}_{\alpha}) = 0$$

Mean velocity \mathbf{u}_{α} equation:

$$\frac{\partial \mathbf{u}_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla \mathbf{u}_{\alpha} = -\frac{q_{\alpha}}{m_{\alpha}} \nabla \Phi - \frac{1}{m_{\alpha} n_{\alpha}} \nabla p_{\alpha}$$

Pressure p_{α} equation: [(*) Cold vs. Warm fluid model] $\frac{\partial p_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla p_{\alpha} = -\gamma p_{\alpha} \nabla \cdot \mathbf{u}_{\alpha}$

The potential Φ obeys *Poisson's* eq.:

$$\nabla^2 \Phi = -4\pi \sum_{\alpha''=\alpha, \{\alpha'\}} q_{\alpha''} n_{\alpha''} = 4\pi e \left(n_e - Z_i n_i + \dots \right)$$

Density n_{α} (*continuity*) equation:

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla \cdot (n_{\alpha} \, \mathbf{u}_{\alpha}) = 0$$

Mean velocity \mathbf{u}_{α} equation:

$$\frac{\partial \mathbf{u}_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla \mathbf{u}_{\alpha} = -\frac{q_{\alpha}}{m_{\alpha}} \nabla \Phi - \frac{1}{m_{\alpha} n_{\alpha}} \nabla p_{\alpha}$$

Pressure p_{α} equation: [(*) Cold vs. Warm fluid model] $\frac{\partial p_{\alpha}}{\partial t} + \mathbf{u}_{\alpha} \cdot \nabla p_{\alpha} = -\gamma p_{\alpha} \nabla \cdot \mathbf{u}_{\alpha}$

The potential Φ obeys *Poisson's* eq.:

$$\nabla^2 \Phi = -4\pi \sum_{\alpha''=\alpha, \{\alpha'\}} q_{\alpha''} n_{\alpha''} = 4\pi e \left(n_e - Z_i n_i + \dots \right)$$

Hypothesis: Overall charge *neutrality* at equilibrium: $q_{\alpha} n_{\alpha,0} = -\sum_{\{\alpha'\}} q_{\alpha'} n_{\alpha',0}$. www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

Reduced moment evolution equations:

Defining appropriate scales (see next slide) one obtains:

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot (n \mathbf{u}) &= 0, \\ \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} &= -\mathbf{s} \nabla \phi - \frac{\sigma}{n} \nabla p, \\ \frac{\partial p}{\partial t} + \mathbf{u} \cdot \nabla p &= -\gamma \, p \, \nabla \cdot \mathbf{u} \,; \end{aligned}$$

also,

$$\nabla^2 \phi = \phi - \alpha \phi^2 + \alpha' \phi^3 - s \beta (n-1); \qquad (1)$$

i.e. *Poisson's Eq. close to equilibrium*: $\phi \ll 1$; $s = \text{sgn}q_{\alpha} = \pm 1$.

- The dimensionless parameters α , α' and β must be determined exactly for any specific problem. They incorporate all the essential dependence on the plasma parameters.

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

We have defined the reduced (dimensionless) quantities:

- particle density: $n = n_{\alpha}/n_{\alpha,0}$;

- mean (fluid) velocity: $\mathbf{u} = [m_{\alpha}/(k_B T_*)]^{1/2} \mathbf{u}_{\alpha} \equiv \mathbf{u}_{\alpha}/c_*;$
- dust pressure: $p = p_{\alpha}/p_0 = p_{\alpha}/(n_{\alpha,0}k_BT_*)$;
- electric potential: $\phi = Z_{\alpha} e \Phi / (k_B T_*) = |q_{\alpha}| \Phi / (k_B T_*);$
- $\gamma = (f+2)/f = C_P/C_V$ (for f degrees of freedom).

Also, *time* and *space* are scaled over: - t_0 , e.g. the inverse *DP* plasma frequency

$$\omega_{p,\alpha}^{-1} = (4\pi n_{\alpha,0} q_{\alpha}^2 / m_{\alpha})^{-1/2}$$

- $r_0 = c_* t_0$, i.e. an effective Debye length

$$\lambda_{D,eff} = (k_B T_*/m_\alpha \omega_{p,\alpha}^2)^{1/2} \,.$$

Finally, $\sigma = T_{\alpha}/T_*$ is the temperature (ratio).

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

3. Reductive Perturbation Technique

- 1st step. Define *multiple scales* (*fast* and *slow*) i.e. (in 2d)

 $\begin{array}{ll} X_{0} = x \,, \, X_{1} = \epsilon \, x \,, & X_{2} = \epsilon^{2} \, x \,, & \dots \\ Y_{0} = \, y \,, & Y_{1} = \epsilon \, y \,, & Y_{2} = \epsilon^{2} \, y \,, & \dots \\ T_{0} = \, t \,, & T_{1} = \epsilon \, t \,, & T_{2} = \epsilon^{2} \, t \,, & \dots \end{array}$

3. Reductive Perturbation Technique

- 1st step. Define *multiple scales* (*fast* and *slow*) i.e. (in 2d)

$$egin{aligned} X_0 &= x \,, \,\, X_1 = \epsilon \, x \,, \,\,\, X_2 = \epsilon^2 \, x \,, \,\,\, ... \ Y_0 &= y \,, \,\,\, Y_1 = \epsilon \, y \,, \,\,\, Y_2 = \epsilon^2 \, y \,, \,\,\, ... \ T_0 &= t \,, \,\,\, T_1 = \epsilon \, t \,, \,\,\, T_2 = \epsilon^2 \, t \,, \,\, ... \end{aligned}$$

and modify operators appropriately:

$$\frac{\partial}{\partial x} \to \frac{\partial}{\partial X_0} + \epsilon \frac{\partial}{\partial X_1} + \epsilon^2 \frac{\partial}{\partial X_2} + \dots$$
$$\frac{\partial}{\partial y} \to \frac{\partial}{\partial Y_0} + \epsilon \frac{\partial}{\partial Y_1} + \epsilon^2 \frac{\partial}{\partial Y_2} + \dots$$
$$\frac{\partial}{\partial t} \to \frac{\partial}{\partial T_0} + \epsilon \frac{\partial}{\partial T_1} + \epsilon^2 \frac{\partial}{\partial T_2} + \dots$$

3. Reductive Perturbation Technique

- 1st step. Define *multiple scales* (*fast* and *slow*) i.e. (in 2d)

$$egin{aligned} X_0 &= x \,, \,\, X_1 = \epsilon \, x \,, \,\,\, X_2 = \epsilon^2 \, x \,, \,\,\, ... \ Y_0 &= \, y \,, \,\,\, Y_1 = \epsilon \, y \,, \,\,\, Y_2 = \epsilon^2 \, y \,, \,\,\, ... \ T_0 &= \, t \,, \,\,\, T_1 = \epsilon \, t \,, \,\,\, T_2 = \epsilon^2 \, t \,, \,\,\, ... \end{aligned}$$

- 2nd step. Expand near equilibrium:

$$n_{\alpha} \approx n_{\alpha,0} + \epsilon n_{\alpha,1} + \epsilon^2 n_{\alpha,2} + ...$$

 $\mathbf{u}_{\alpha} \approx \mathbf{0} + \epsilon \mathbf{u}_{\alpha,1} + \epsilon^2 \mathbf{u}_{\alpha,2} + ...$
 $p_{\alpha} \approx p_{\alpha,0} + \epsilon p_{\alpha,1} + \epsilon^2 p_{\alpha,2} + ...$
 $\phi \approx 0 + \epsilon \phi_1 + \epsilon^2 \phi_2 + ...$

 $(p_{\alpha,0} = n_{\alpha,0}k_BT_{\alpha}; \quad \epsilon \ll 1 \text{ is a smallness parameter}).$ www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Reductive perturbation technique *(continued)* – 3rd step. Project on Fourier space, i.e. consider $\forall m = 1, 2, ...$

$$S_m = \sum_{l=-m}^m \hat{S}_l^{(m)} e^{il(\mathbf{k}\cdot\mathbf{r}-\omega t)} = \hat{S}_0^{(m)} + 2\sum_{l=1}^m \hat{S}_l^{(m)} \cos l(\mathbf{k}\cdot\mathbf{r}-\omega t)$$

for $S_m = (n_m, \{u_{x,m}, u_{y,m}\}, p_m, \phi_m)$, i.e. essentially:

$$n_1 = n_0^{(1)} + \tilde{n}_1^{(1)} \cos \theta$$
, $n_2 = n_0^{(2)} + \tilde{n}_1^{(2)} \cos \theta + \tilde{n}_2^{(2)} \cos 2\theta$, etc.

Reductive perturbation technique (continued) – 3rd step. Project on Fourier space, i.e. consider $\forall m = 1, 2, ...$

$$S_m = \sum_{l=-m}^m \hat{S}_l^{(m)} e^{il(\mathbf{k}\cdot\mathbf{r}-\omega t)} = \hat{S}_0^{(m)} + 2\sum_{l=1}^m \hat{S}_l^{(m)} \cos l(\mathbf{k}\cdot\mathbf{r}-\omega t)$$

for
$$S_m = (n_m, \{u_{x,m}, u_{y,m}\}, p_m, \phi_m)$$
, i.e. essentially:

$$n_1 = n_0^{(1)} + \tilde{n}_1^{(1)} \cos \theta$$
, $n_2 = n_0^{(2)} + \tilde{n}_1^{(2)} \cos \theta + \tilde{n}_2^{(2)} \cos 2\theta$, etc.

- 4rth step. Oblique modulation assumption: the slow amplitudes $\hat{\phi}_l^{(m)}$, etc. vary only along the *x*-axis: $\hat{S}_l^{(m)} = \hat{S}_l^{(m)}(X_j, T_j), \qquad j = 1, 2, ...$ while the fast carrier phase $\theta = \mathbf{k} \cdot \mathbf{r} - \omega t$ is now: $k_x x + k_y y - \omega t = k r \cos \alpha - \omega t$.

First-order solution ($\sim \epsilon^1$ **)** Substituting and isolating terms in m = 1, we obtain:

□ The dispersion relation $\omega = \omega(k)$:

$$\omega^{2} = \omega_{p,\alpha}^{2} \frac{k^{2}}{k^{2} + k_{D}^{2}} + \gamma v_{th}^{2} k^{2}$$
(2)

with $k_D = \lambda_D^{-1}$, where

$$\omega_{p,\alpha} = \left(\frac{4\pi n_{\alpha,0}q_{\alpha}^2}{m_{\alpha}}\right)^{1/2}, \ \lambda_{D,\alpha} = \left(\frac{k_B T_{\alpha}}{4\pi n_{\alpha,0}q_{\alpha}^2}\right)^{1/2}, \ v_{th} = \left(\frac{T_{\alpha}}{m_{\alpha}}\right)^{1/2}$$

 \Box The solution(s) for the 1st–harmonic amplitudes (e.g. $\propto \phi_1^{(1)}$):

$$n_1^{(1)} = s \frac{1+k^2}{\beta} \phi_1^{(1)} = \frac{1}{\gamma} p_1^{(1)} = \frac{k}{\omega \cos \theta} u_{1,x}^{(1)} = \frac{k}{\omega \sin \theta} u_{1,y}^{(1)}$$

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Second-order solution ($\sim \epsilon^2$)

 \Box From m = 2, l = 1, we obtain the relation:

$$\frac{\partial \psi}{\partial T_1} + v_g \frac{\partial \psi}{\partial X_1} = 0$$

where $-\psi = \phi_1^{(1)}$ is the potential correction ($\sim \epsilon^1$); $-v_g = \frac{\partial \omega(k)}{\partial k_x}$ is the group velocity along \hat{x} ; - the wave's envelope satisfies: $\psi = \psi(\epsilon(x - v_g t)) \equiv \psi(\zeta)$. \Box The solution, up to $\sim \epsilon^2$, is of the form:

 $\phi \approx \epsilon \psi \cos \theta + \epsilon^2 \left[\phi_0^{(2)} + \phi_1^{(2)} \cos \theta + \phi_2^{(2)} \cos 2\theta \right] + \mathcal{O}(\epsilon^3) ,$ etc. (+ similar expressions for n_d , u_x , u_y , p_d): \rightarrow Harmonics!.

(4)

Third-order solution ($\sim \epsilon^3$)

 \Box Compatibility equation (from m = 3, l = 1), in the form of:

$$i\frac{\partial\psi}{\partial\tau} + P\frac{\partial^2\psi}{\partial\zeta^2} + Q\,|\psi|^2\,\psi = 0\,.$$
(5)

i.e. a Nonlinear Schrödinger-type Equation (NLSE).

 \Box Variables: $\zeta = \epsilon(x - v_g t)$ and $\tau = \epsilon^2 t$;

Dispersion coefficient *P*:

$$P = \frac{1}{2} \frac{\partial^2 \omega}{\partial k_x^2} = \frac{1}{2} \left[\omega''(k) \cos^2 \alpha + \omega'(k) \frac{\sin^2 \alpha}{k} \right]; \quad (6)$$

□ Nonlinearity coefficient Q: ... A (lengthy!) function of k, angle α and T_e , T_i , ... → (omitted).

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

4. Modulational (in)stability analysis

□ The NLSE admits the *harmonic wave solution*:

$$\psi = \hat{\psi} e^{iQ|\hat{\psi}|^2\tau} + \text{c.c.}$$

 \Box Perturb the amplitude by setting: $\hat{\psi} = \hat{\psi}_0 + \epsilon \hat{\psi}_{1,0} \cos{(\tilde{k}\zeta - \tilde{\omega}\tau)}$

□ We obtain the *(perturbation)* dispersion relation:

$$\tilde{\omega}^2 = P^2 \,\tilde{k}^2 \left(\tilde{k}^2 - 2\frac{Q}{P} |\hat{\psi}_{1,0}|^2 \right).$$
(7)

 \Box If PQ < 0: the amplitude ψ is stable to external perturbations;

 \Box If PQ > 0: the amplitude ψ is *unstable* for $\tilde{k} < \sqrt{2\frac{Q}{P}}|\psi_{1,0}|$.

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Stability profile (IAW): Angle α versus wavenumber k

Typical values: $Z_i = +1$ (hydrogen plasma), $\gamma = 2$.

- *Ion-acoustic waves*; cold ($\sigma = 0$) vs. warm ($\sigma \neq 0$) fluid:

Stability profile (IAW): Angle α versus wavenumber k

Typical values: $Z_i = +1$ (hydrogen plasma), $\gamma = 2$.

- *Ion-acoustic waves*; cold ($\sigma = 0$) vs. warm ($\sigma \neq 0$) fluid:

- Dust-ion acoustic waves, i.e. in the presence of negative dust $(n_{d,0}/n_{i,0} = 0.5)$:

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Stability profile (IAW): Angle α **versus wavenumber** k

Typical values: $Z_i = +1$ (hydrogen plasma), $\gamma = 2$.

- *Ion-acoustic waves*; cold ($\sigma = 0$) vs. warm ($\sigma \neq 0$) fluid:

- Dust-ion acoustic waves, i.e. in the presence of positive dust $(n_{d,0}/n_{i,0} = 0.5)$:

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Stability profile (DAW): Angle α versus wavenumber k

Typical values: $Z_d/Z_i \approx 10^3$, $T_e/T_i \approx 10$, $n_{d,0}/n_{i,0} \approx 10^{-3}$, $\gamma = 2$.

- Negative dust: s = -1; cold ($\sigma = 0$) vs. warm ($\sigma \neq 0$) fluid:

Stability profile (DAW): Angle α versus wavenumber k

Typical values: $Z_d/Z_i \approx 10^3$, $T_e/T_i \approx 10$, $n_{d,0}/n_{i,0} \approx 10^{-3}$, $\gamma = 2$.

- Negative dust: s = -1; cold ($\sigma = 0$) vs. warm ($\sigma \neq 0$) fluid:

- The same plot for positive dust (s = +1):

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

5. Localized envelope excitations (solitons)

□ The NLSE:

$$i\frac{\partial\psi}{\partial\tau} + P\frac{\partial^2\psi}{\partial\zeta^2} + Q\,|\psi|^2\,\psi = 0$$

accepts various soliton solutions: $\psi = \rho e^{i\Theta}$; the *total* electric potential is then: $\phi \approx \epsilon \rho \cos(\mathbf{kr} - \omega t + \Theta)$ where the amplitude ρ and phase correction Θ depend on ζ, τ .

5. Localized envelope excitations (solitons)

 \Box The NLSE accepts various soliton solutions: $\psi = \rho e^{i\Theta}$; the *total* electric potential is then: $\phi \approx \epsilon \rho \cos(\mathbf{kr} - \omega t + \Theta)$ where the amplitude ρ and phase correction Θ depend on ζ, τ .

Bright-type envelope soliton (pulse):

$$\rho = \rho_0 \operatorname{sech}\left(\frac{\zeta - v\tau}{L}\right), \qquad \Theta = \frac{1}{2P} \left[v\zeta - (\Omega + \frac{1}{2}v^2)\tau \right].$$
(8)

$$L = \sqrt{\frac{2P}{Q}} \frac{1}{\rho_0}$$
This is a
propagating
(and oscillating)

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

pro

localized pulse:

Propagation of a bright envelope soliton (pulse)

Propagation of a bright envelope soliton (pulse)

Cf. electrostatic plasma wave data from satellite observations:

(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)])

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

Localized envelope excitations (part 2)

□ Dark–type envelope solution (*hole soliton*):

$$\rho = \pm \rho_1 \left[1 - \operatorname{sech}^2 \left(\frac{\zeta - v\tau}{L'} \right) \right]^{1/2} = \pm \rho_1 \tanh \left(\frac{\zeta - v\tau}{L'} \right),$$

$$\Theta = \frac{1}{2P} \left[v \zeta - \left(\frac{1}{2} v^2 - 2PQ\rho_1 \right) \tau \right]$$

$$L' = \sqrt{2 \left| \frac{P}{Q} \right|} \frac{1}{\rho_1}$$
(5)

This is a propagating localized hole (zero density void):

Localized envelope excitations (part 3)

Grey–type envelope solution (*void soliton*):

$$\rho = \pm \rho_2 \left[1 - a^2 \operatorname{sech}^2 \left(\frac{\zeta - v \tau}{L''} \right) \right]^{1/2}$$

$$\Theta = \dots$$

$$L'' = \sqrt{2 \left| \frac{P}{Q} \right|} \frac{1}{a\rho_2}$$

This is a propagating *(non zero-density)* void:

6. Conclusions

Amplitude Modulation (due to carrier self-interaction) is an inherent feature of electrostatic (ES) plasma mode dynamics;

- ES waves may undergo spontaneous *modulational instability*; this is an intrinsic feature of nonlinear dynamics, which ...
- Image may lead to the formation of envelope localized structures (envelope solitons), in account for energy localization phenomena widely observed in space and laboratory.
- ❑ The RP analytical framework permits modeling of these mechanisms in terms of intrinsic physical (plasma) parameters.
 → a small step towards understanding the nonlinear behaviour of Plasmas.

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

I. Kourakis & P

nukla, Nonlinear modulated envelope electrosta

electrostatic wave packet propagation...

Thank You !

Ioannis Kourakis Padma Kant Shukla

Acknowledgments;

SPIG organizers + Prof. Dusan Jovanoviç

Material from: I. Kourakis & P. K. Shukla, *Phys. Plasmas*, **10** (9), 3459 (2003); *idem*, *PRE*, **69** (3), 036411 (2003). *idem*, *J. Phys. A*, **36** (47), 11901 (2003). *idem*, *European Phys. J.* D, **28**, 109 (2004). *Available at:* www.tp4.rub.de/~ioannis

Appendix: DP – Dusty Plasmas (or Complex Plasmas): definition and characteristics

□ Ingredients:

- electrons e^- (charge -e, mass m_e),
- ions i^+ (charge $+Z_i e$, mass m_i), and
- charged micro-particles \equiv dust grains d (most often d⁻): charge $Q = \pm Z_d e \sim \pm (10^3 - 10^4) e$, mass $M \sim 10^9 m_p \sim 10^{13} m_e$, radius $r \sim 10^{-2} \mu m$ up to $10^2 \mu m$.

Origin: Where does the dust come from?

- Space: cosmic debris (silicates, graphite, amorphous carbon), comet dust, man-made pollution (Shuttle exhaust, satellite remnants), ...
- □ Atmosphere: extraterrestrial dust (meteorites): $\geq 2 \cdot 10^4$ tons a year (!)(*), atmospheric pollution, chemical aerosols, ...
- Fusion reactors: plasma-surface interaction, carbonaceous particulates resulting from wall erosion-created debris (graphite, CFCs: Carbon Fiber Composites, ...)
- Laboratory: (man-injected) melamine-formaldehyde particulates (**) injected in *rf* or *dc* discharges; 3d (= multiple 2d layers) or 1d (by appropriate experimental setting) crystals.

Sources: [P. K. Shukla & A. Mamun 2002], (*) [DeAngelis 1992], (**) [G. E. Morfill *et al.* 1998] www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

Some unique features of the Physics of Dusty Plasmas:

- Complex plasmas are overall charge neutral; most (sometimes all!) of the negative charge resides on the microparticles;
- □ The microparticles can be *dynamically dominant*: mass density $\approx 10^2$ times higher than the neutral gas density and $\approx 10^6$ times higher than the ion density !
- □ Studies in *slow motion* are possible due to high M i.e. *low* Q/M ratio (e.g. dust plasma frequency: $\omega_{p,d} \approx 10 - 100$ Hz);
- □ The (large) microparticles can be visualised individually and studied at the kinetic level (with a digital camera!) → video;
- □ Dust charge ($Q \neq const.$) is now a dynamical variable, associated to a new collisionless damping mechanism;

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

(...continued) More "heretical" features are:
 Important gravitational (compared to the electrostatic) interaction effects; gravito-plasma physics; gravito-electrodynamics; Jeans-type (gravitational) plasma instabilities etc. [Verheest PPCF 41 A445, 1999]

Complex plasmas can be strongly coupled and exist in "liquid" (1 < Γ < 170) and "crystalline" (Γ > 170 [IKEZI 1986]) states, depending on the value of the effective coupling (plasma) parameter Γ;

$$\Gamma_{eff} = \frac{\langle E_{potential} \rangle}{\langle E_{kinetic} \rangle} \sim \frac{Q^2}{r T} e^{-r/\lambda_D}$$

(r: inter-particle distance, T: temperature, λ_D : Debye length).

Cf.: Lecture given by *Tito Mendonça* (Sat. July 17, 2004). www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf Int. Symposium on the Physics of Ionized Gases (SPIG 2004)

Dust laboratory experiments on Earth:

www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf

I. Kourakis & P. K. Shukla, Nonlinear modulated envelope electrostatic wave packet propagation...

Earth experiments are subject to gravity:

I. Kourakis & P. K. Shukla, Nonlinear modulated envelope electrostatic wave packet propagation...

(Online data from: Max Planck Institüt - CIPS). www.tp4.rub.de/~ioannis/conf/2004-SPIG-oral.pdf