
Envelope solitons in a magnetized pair plasma
Tom Cattaert

Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent, Belgium

I. Kourakis and P. K. Shukla
Institut für Theoretische Physik IV, Ruhr–Universität Bochum, D–44780 Bochum, Germany

Introduction

Electron-positron (e-p) plasmas are widely encountered in astro-
physical situations and are believed to be sources of intense elec-
tromagnetic radiation from pulsar magnetospheres [1], in active
galactic nuclei [2] and in models for the early universe [3]. Recent
experiments have demonstrated the possibility of creating a non-
relativistic e-p plasma in the laboratory and several experimental
studies are now being carried out [4]. Interestingly, e-p plasma was
recently also shown to occur in large fusion machines (tokamaks)
[5].
The characteristics of the propagation of electromagnetic (em)
waves in electron-positron plasmas are strongly modified with re-
spect to electron-ion plasmas, essentially due to the absence of
distinct time and length scales. One generic nonlinear mechanism
which remains unexplored in e-p plasmas is the amplitude modula-
tion of em waves, either due to self-interaction of the carrier wave
or due to parametric interaction effects. This is a long-known
characteristic mechanism governing nonlinear wave propagation
in dispersive media, and is related to effects like energy localiza-
tion, harmonic generation, modulational instabilities and localized
envelope structure formation, in contexts as diverse as solid state
physics, nonlinear optics and plasma physics [6, 7].
This work is dedicated to a study, from first principles, of the
modulation of the electric field amplitude of em waves propagat-
ing in e-p plasmas, in correlation with background density and
magnetic field variations. The modulational stability profile of em
waves will be examined and the possibility for the occurrence of
localized envelope excitations will be investigated.

The model

The system we are interested in studying is a collisionless plasma
consisting of electrons (rest mass m, charge−e, equilibrium density
n0) and positrons (rest mass m, charge e, equilibrium density n0).
There is a magnetic field B0 = B0ez present. In this plasma we
look at the amplitude modulation of circularly polarized electro-
magnetic (cyclotron) waves propagating along the magnetic field.

The electric field is given by E = 1
2

[
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The linear dispersion relation for these waves is
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where where ωp is the plasma frequency ωp = (4πn0e
2/m)1/2

and ωc is the cyclotron frequency ωc = eB0/mc. Note
that these waves can be left-hand or right-hand circularly
polarized but that makes no difference in the dispersion
relation. It has fast and slow mode solutions given by
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with the upper-hybrid frequency ωH defined as ωH = (2ω2
p +

ω2
c)

1/2.
The standard wave modulation formalism [8, 9], accounting for
the coupling with the background slow motion and for weakly
relativistic mass variation, leads in the WKB approximation,
i.e. for a slowly varying amplitude, and for weak nonlinearities,
to an electric field obeying the nonlinear Schrödinger-type equation

i

(
∂E

∂t
+ vg

∂E

∂z

)
+ P

∂2E

∂z2
−∆E = 0, (3)

where vg and P are the group velocity and group dispersion given
by
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It is straightforward to check numerically that P <
0 for the slow mode and P > 0 for the fast
mode. The nonlinear frequency shift ∆ is given by [9]
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where n1, V , and B1 are, respectively, the density, fluid velocity,
and the compressional magnetic field perturbations (along the
z-axis) associated with the plasma slow motion (due to the pon-
deromotive force and magnetization) and ∆r is The nonlinear
frequency shift ∆r due to the relativistic particle mass variation
Note that quasi-neutrality has been assumed.

Density and magnetic field perturbations

For quasi-static modulations, making use of the ponderomotive
force [10] and magnetization [11] due to the em waves, we find [12]

n1

n0
= −

2ω2
p

ω2 − ω2
c

|E|2 − |E0|2

4πn0kBT
, (7)

B1

B0
= −

4ω4
p

(ω2 − ω2
c)

2

kBT

mc2

|E|2 − |E0|2

4πn0kBT
(8)

where T is the sum of the electron and positron tem-
peratures and kBT/mc2 is small but finite. Finally,
the nonlinear frequency shift takes the form ∆ =
−Q(|E|2 − |E0|2) where the nonlinearity coefficient Q is
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The electric field then obeys the nonlinear Schrödinger equation
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Here a Galilean transformation z → ζ = z−vgt to a frame moving
at the group velocity has been introduced. Our equations provide a
self-consistent description of the electron-positron plasma, in terms
of the electric field E, the magnetic field perturbation B1 and the
density variation n1.

Modulational stability

We go over to a polar representation, i.e. we write E as E = ρeiθ

where ρ(ζ, t) and θ(ζ, t) are real functions. Note that this
means that ρ = |E| with equilibrium value ρ0 = |E0|. Equa-
tion (10) has the obvious solution ρ = ρ0, θ = 0. When

perturbing linearly, i.e. assuming ρ = ρ0 + ρ1e
i(Kζ−Ωt)

and θ = σ1e
i(Kζ−Ωt), we find the dispersion relation

Ω2 = PK2(PK2 − 2Qρ2
0) = (PK2 −Qρ2

0)
2 −Q2ρ4

0. (11)

We see immediately that if η ≡ P/Q > 0, Ω2 becomes negative

for values of K below Kcr = (2/η)1/2|E0|, so that there is a
purely growing amplitude mode and the wave gets modulation-
ally unstable. The growth rate σ = Im(Ω) reaches a maximum

σmax = Q|E0|2 for K = (1/η)1/2|E0|. On the other hand, for
η < 0, the wave is modulationally stable.

Bright solitons in the fast mode
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Fig.1: Electric field, density and magnetic field profiles of the bright soliton at

t = 0. We took ωp/ωc = 1 and kBT/mc2 = 0.05 and are in the slow mode

at kc/ωp = 0.2, ω/ωc = 1.7398. We have chosen A = 0.01, ve = 0, Ω = 0,

ζ0 = 0 and θ0 = 0. Care has been taken to meet the requirements of weak

nonlinearity, slowly varying amplitude and the group and envelope velocities

small compared to the speed of light.
As we saw above, the fast mode has η > 0, and is thus modu-
lationally unstable. Wave collapse can now lead to the forma-
tion of a bright soliton [13], i.e. a localised pulse-like envelope
modulating the carrier wave. It is of the form E = ρeiθ where
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Here ve is the envelope velocity, L, Ω and ζ0 are the pulses spatial
width, oscillation frequency and position at t = 0, and θ0 is an
arbitrary phase. The equilibrium amplitude is ρ0 = 0.

The maximum amplitude ρM is inversely proportional to the width

L, i.e. ρML = (2η)1/2. Note that when going back to the original
coordinates, the envelope is moving at the speed vg+ve. Let us also
emphasize that the total phase of the electric field is kz − ωt + θ.
It is found that these bright solitons correspond to a reduction of
both density and magnetic field, as can be seen in Fig. 1.

Grey and dark solitons in the slow mode

For the slow mode we have η < 0, so this one is modulation-
ally stable. Now there are grey envelope solitons [13] which
represent a localized region of negative electric field density.
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Here the parameter d, laying in the range 0 < d ≤ 1, regulates
the modulation depth, s = ±1, and V0 is given by the for-
mula V0 = ve + s2P

Ld

√
1− d2. Note that for d = 1, one has a

dark soliton. The (finite) equilibrium amplitude ρ0 is now in-
versely proportional to both the width L and the parameter d,
i.e. ρ0Ld = (2|η|)1/2. The minimum amplitude ρm is given

by ρm = ρ0(1 − d2)1/2, which is zero in the dark case. These
grey and dark solitons correspond to a decrease in the density
and an increase of the magnetic field, as can be seen in Fig. 2.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.01

−0.005

0

0.005

0.01

−6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5
x 10

−4

−6 −4 −2 0 2 4 6
−5

0

5

10

15
x 10

−4

E
x
/(4π n

0
k

B
T)1/2 

n
1
/n

0
 

B
1
/B

0
 

z/L 

Fig. 2: Electric field, density and magnetic field profiles of the grey soliton at

t = 0. We took again ωp/ωc = 1 and kBT/mc2 = 0.05 and are in the fast mode

at kc/ωp = 4, ω/ωc = 0, 9398. We have chosen A = 0.01, ve = 0, d = 0.95,

s = +1, ζ0 = 0 and θ0 = 0.

Conclusions

We studied the amplitude modulation of magnetic field-aligned
circularly polarized electromagnetic waves in an electron-positron
magnetoplasma. We obtained a set of coupled equations for the
electric field envelope and the density and magnetic field perturba-
tions induced by the electromagnetic waves taking into account the
ponderomotive force, magnetization and weakly relativistic mass
variation. Modulational stability was explored and the possiblities
for bright and grey envelope electromagnetic soliton structures have
been investigated.

References

[1] S. Johnston, M. A. Walker and M. Bailes (Eds.), Pulsars: Problems and Progress, ASP

Conference Series, Vol. 105 (1996).

[2] H. R. Miller and P. J. Wiita (Eds.), Active Galactic Nuclei, Springer-Verlag (Berlin, 1998).

[3] G. W. Gibbons, S. W. Hawking and S. Siklos (Eds.), The Very Early Universe, Cambrigde

University Press (Cambridge, 1983).

[4] R. G. Greaves, M. D. Tinkle and C. M. Surko, Phys. Plasmas 1, 1439 (1994); J. Zhao, J. I.

Sakai and K. Nishikawa, Phys. Plasmas 3, 844 (1996); R. G. Greaves and C. M. Surko, Phys.

Rev. Lett. 75, 3846 (1995).

[5] P. Helander and D. J.Ward, Phys. Rev. Lett. 90, 135004 (2003).

[6] M. Remoissenet, Waves called solitons (Springer-Verlag, Berlin, 1994).

[7] A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, Berlin, 1975).

[8] V.I. Karpman and H. Washimi, J. Plasma Phys. 18, 173 (1977).

[9] P.K. Shukla and L. Stenflo, in: Pulsars: Problems and Progress, (Eds. S. Johnston, M.A.

Walker and M. Bailes, ASP Conf. Series 105, 1996), pp. 171–174.

[10] H. Washimi and V.I. Karpman, Sov. Phys. JETP bf 44, 528 (1977).

[11] P.K. Shukla and L. Stenflo Phys. Fluids B 1, 1926 (1989).

[12] T. Cattaert, I. Kourakis and P.K. Shukla, Envelope solitons associated with electromagnetic

waves in a magnetized pair plasma, Phys. Plasmas submitted(2004).

[13] R. Fedele and H. Schamel, Eur. Phys. J. B27, 313 (2002).


