Theory of nonlinear excitations in dusty plasma crystals
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Abstract

The nonlinear aspects of horizontal (longitudinal, acoustic mode) and vertical
(transverse, optical mode) motion of charged dust grains in a (1d) dusty plasma
monolayer are discussed. Different types of localized excitations (solitary waves)
are reviewed and their characteristics (and conditions for occurrence) are discussed.

1. Introduction. Recent studies of collective processes in dusty plasmas (DP) have
been of significant interest in relation with experimental observations. Of particular im-
portance are dust quasi-lattices, typically formed in the sheath region above the negative
electrode in discharge experiments, horizontally suspended at an equilibrium position at
z = zp, where gravity and electric (and/or magnetic) forces balance. The linear regime of
low-frequency oscillations in DP crystals, in the longitudinal (acoustic mode) and trans-
verse (in-plane, shear acoustic mode and vertical, off-plane optical mode) direction(s),
is now quite well understood. However, the nonlinear behaviour of DP crystals is still
mostly unexplored, and has lately attracted experimental [1 - 3] and theoretical [1 - 8]
interest.

Recently [4], we considered the coupling between the horizontal (~ %) and vertical
(off-plane, ~ 2) degrees of freedom in a dust mono-layer; a set of nonlinear equations
for longitudinal and transverse dust lattice waves (LDLWs, TDLWs) was thus rigorously
derived [4]. Here, we review the nofnlinear dust grain excitations which may occur in a
DP crystal (here assumed quasi-one-dimensional and infinite, composed from identical
grains, of equilibrium charge ¢ and mass M, located at z,, = nrg, n € N'). Ion-wake and
ion-neutral interactions (collisions) are omitted, at a first step. This study complements
recent experimental investigations [1-3] and may hopefully motivate future ones.

2. Transverse envelope structures. The vertical (off-plane) n—th grain displace-
ment 02, = 2, — % in a dust crystal obeys the equation'?

d*6z, d(6zn)

a TV

+ Who (0zni1+ 0201 — 202,) + W) 6zn + @ (620) + B (62,)° = 0. (1)

The characteristic frequency wry = [—qU'(ro)/(M ro)]'/? is related to the interaction
potential U(r) [e.g. for a Debye-Hiickel potential: Up(r) = (g/r)e "/*?, one has
wi p = why exp(—r) (1+ k) /k%; wpr = [¢*/(MAY)]/? is the characteristic dust-lattice
frequency; Ap is the Debye length; x = r9/Ap is the DP lattice parameter|. The
gap frequency w, and the nonlinearity coefficients «, 8 are defined via the potential
®(2) ~ D(20) + Mwzdz /2 + a (620)%/3 + B (62n)* /4] + O[(62,)°] (formally expanded
near 2o, taking into account the electric and/or magnetic field inhomogeneity and charge
variations®), i.e. leading to an overall vertical force F'(z) = Fy(2) — Mg = —0®(2)/0z
[recall that Fi/m(29) = Mg|. Linear excitations, viz. 6z, ~ cos ¢, (here ¢, = nkry — wt)
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obey the optical-like discrete dispersion relation*: w? = w? — 4w?, sin®(kro/2) = w}.
Transverse vibrations propagate as a backward wave [see that vy = wh.(k) < 0] - for any
form of U(r) — cf. recent experiments [2]. Notice the lower cutoff wrmin = (w2 —4w?)!/?
(at the edge of the Brillouin zone, at k = 7/rq), which is absent in the continuum limit.

Slightly departing from the small amplitude (linear) assumption, one obtains: z, ~
e(wi e +cc) + 2wl + (W e + c.c)] + ... (where w ~ |42, W ~ A2);

n(zt)ice the generation of higher phase harmonics due to nonlinearity. The amplitude
1

wy’ = A obeys a nonlinear Schrédinger equation (NLSE) in the form [5]:
0A 0?A 9
za—T+P6X2+Q|A|A—O, (2)

where {X, T} are the slow variables {e(z — v,t),€?t}. The dispersion coefficient Pr =
wh(k)/2 is negative/positive for low/high values of k. The nonlinearity coefficient Q =
[10e/(3w;) — 3 B]/2wr is positive for all known experimental values of a, 3 [3]. For long
wavelengths [i.e. k < k.., where P(k.) = 0], the theory [5] predicts that TDLWs will be
modulationally stable, and may propagate in the form of dark/grey envelope excitations
(hole solitons or wvoids; see Fig. la,b). On the other hand, for k& > k.., modulational
instability may lead to the formation of bright (pulse) envelope solitons (see Fig. 1lc).
Analytical expressions for these excitations can be found in [5] (also see Paper P5.058).
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Figure 1: TDL envelope solitons of the (a) dark, (b) grey, and (c) bright type.

3. Longitudinal envelope excitations. The nonlinear equation of motion®:
d*(6x,) n d(0zy,)

a2 U
—ag [(6Tps1 — 02)? — (63 — 675 1)*] + aso [(6Tpsr — 02,)° — (62, — 61, 1)%]  (3)

= wy p, (0Tni1 + 6y — 20x,)

describes the longitudinal dust grain displacements dx,, = xz, — nro. The resulting
acoustic linear mode* obeys: w? = 4w} | sin®(kro/2) = w?, where wo,, = [U" (ro) /M)]*/%;
in the Debye case, w} o = 2wp;, exp(—k) (1+£+k%/2)/k*. The multiple scales (reductive
perturbation) technique (cf. above) now yields (~ €) a zeroth-harmonic mode, describing
a constant displacement, viz. 6z, ~ € [ul” + (ul" €% + c.c.)] + € (uS? €2 +c.c.) + ..
where the amplitudes now obey the coupled equations [6]:

9

au§” 82u§1) W2 1) , Pok’ oul!
; P 2, (1) WZ% 4
i T gxe + @olw e + 57w 5 =0, (4)
2ulV) pok? 0
: = - s ugl)‘27 (5)

0X2 Vg, — wi g 0X |



where v, ;, = wi,(k); {X,T} are slow variables (as above). The description involves the
definitions: py = —r3U" (ro)/M = 2asry and qo = U™ (ro)ry/(2M) = 3azerg (both
positive quantities of similar order of magnitude for Debye interactions; see in [4, 7]).
Egs. (4), (5) may be combined into a closed equation, which is identical to Eq. (2)
(for A = ul?, here). Now, here P = P, = w](k)/2 < 0, while the form of > 0
(< 0) [6] prescribes stability (instability) at low (high) k. Envelope excitations are now
asymmetric, i.e. rarefactive bright or compressive dark envelope structures (see Figs.).
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Figure 2: Bright LDL (asymmetric) envelope solitons: (a) the zeroth (pulse) and first harmonic
(kink) amplitudes; (b) the resulting asymmetric wavepacket.
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Figure 3: (a) Grey and (b) dark LDL (asymmetric) modulated wavepackets.

4. Longitudinal solitons. Equation (3) is identical to the equation of motion in an
atomic chain with anharmonic springs, i.e. in the celebrated FPU (Fermi-Pasta-Ulam)
problem. Inspired by methods of solid state physics, one may opt for a continuum
description at a first step, viz. 6x,(t) — u(x,t). This may lead to different nonlinear
evolution equations (depending on simplifying assumptions), some of which are critically
discussed in [7]. What follows is a summary of the lengthy analysis carried out therein.

Keeping lowest order nonlinear and dispersive terms, the continuum variable u obeys!:

2
C
- : 2 L 2 _ 2
U+ vy — Cr, Ugy — 12 To Uggze = — Po Ug Uy + @ (ucc) Uz (6)

where (-); = 0(-)/0x; ¢, = wroTo; Po and g were defined above. Assuming near-sonic
propagation (i.e. v ~ cr), and defining the relative displacement w = u,, one has

w, — awwe + aw?we + bweee = 0 (7)

(for v = 0), where a = py/(2cr) > 0, @ = qo/(2cz) > 0, and b = czr3/24 > 0.
Since the original work of Melandsg [8], various studies have relied on the Korteweg -
deVries (KdV) equation, i.e. Eq. (7) for @ = 0, in order to gain analytical insight in
the compressive structures observed in experiments [1]. Indeed, the KdV Eq. possesses
negative (only, here, since a > 0) supersonic pulse soliton solutions for w, implying a
compressive (anti-kink) excitation for u; the KdV soliton is thus interpreted as a density
variation in the crystal, viz. n(z,t)/ng ~ —0u/0r = —w. Also, the pulse width Ly and



height ug satisfy ugL2 = cst., a feature which is confirmed by experiments [1]. Now,
here’s a crucial point to be made (among others [7]): @ ~ 2a roughly in a Debye crystal
(for k &~ 1), thus invalidating the KdV approximation (i.e. for @ ~ 0). Instead, one may
employ the ertended KdV Eq. (eKdV) (7), which accounts for both compressive and
rarefactive lattice excitations (see expressions in [7]; also cf. Fig. 4).
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Figure 4: Solutions of the extended KdV Eq. (for ¢o > 0; dashed curves) vs. those of the KdV
Eq. (for ¢y = 0; solid curves): (a) relative displacement u,; (b) grain displacement w.

Alternatively, Eq. (6) can be reduced to a Generalized Boussinesq (GBq) Equation
w — Ug Wey = hwxwww +p (w2)ww + q (w3)zz (8)

(w=wug p=—po/2<0,q=q/3 > 0); again, for g ~ gy = 0, one recovers a Boussinesq
(Bq) equation, e.g. widely studied in solid chains. As physically expected, the GBq (Bq)
equation yields, like its eKdV (KdV) counterpart, both compressive and rarefactive (only
compressive) solutions; however, the (supersonic) propagation speed v now does not have
to be close to ¢r. A detailed comparative study of (and exact expressions for) all of these
soliton excitations can be found in [7] and is too lengthy to reproduce here.

Concluding, we have reviewed recent results on nonlinear excitations (solitary waves)
occurring in a (1d) dust mono-layer. Modulated envelope TDL and LDL structures occur,
due to sheath and coupling nonlinearity. Both compressive and rarefactive longitudinal
excitations are predicted and may be observed by appropriate experiments.
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