Euratom – Hellenic Republic Association 3rd Hellenic School of Fusion Physics and Technology, 27 March – 2 April 2004 University of Thessaly, Volos, Greece

Electrostatic wave propagation in dusty plasmas

Ioannis KOURAKIS[†] & Padma Kant SHUKLA

R.U.B. Ruhr-Universität Bochum Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie D–44780 Bochum, Germany [†]email: ioannis@tp4.rub.de

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

Outline

A. Introduction

(i) *Dusty Plasma (DP)*: a rapid overview of notions and ideas(ii) Occurrence of DP: Space, laboratory and fusion plasmas

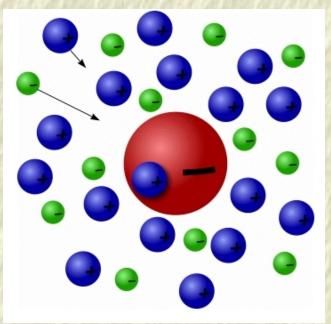
- B. A physical paradigm: Dust ion-acoustic waves (DIAWs)
- C. Focus issue: Dust acoustic waves (DAWs)
 - (i) Linear features

(ii) The mechanism of *wave amplitude modulation (AM)*(iii) *Envelope excitations*

- D. Dust-lattice waves (DLW): \rightarrow poster
- E. Conclusions

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3rd Hellenic School of Fusion Physics and Technology, 2004

A. Intro. (i) DP – Dusty Plasmas (or Complex Plasmas): definition and characteristics



□ Ingredients:

- electrons e^- (charge -e, mass m_e),
- ions i^+ (charge $+Z_i e$, mass m_i), and
- charged micro-particles \equiv dust grains d (most often d⁻): charge $Q = \pm Z_d e \sim \pm (10^3 - 10^4) e$, mass $M \sim 10^9 m_p \sim 10^{13} m_e$, radius $r \sim 10^{-2} \mu m$ up to $10^2 \mu m$.

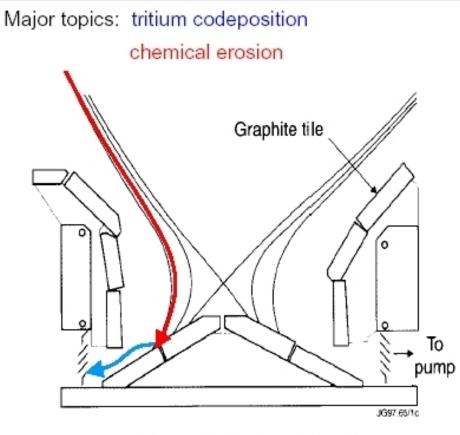
Origin: Where does the dust come from?

- Space: cosmic debris (silicates, graphite, amorphous carbon), comet dust, man-made pollution (Shuttle exhaust, satellite remnants), ...
- □ Atmosphere: extraterrestrial dust (meteorites): $\geq 2 \cdot 10^4$ tons a year (!)(*), atmospheric pollution, chemical aerosols, ...
- Laboratory: (man-injected) melamine-formaldehyde particulates (**), ...
- Fusion reactors: plasma-surface interaction, carbonaceous particulates resulting from wall erosion-created debris (graphite, Carbon Fiber Composites, ...)

Sources: [P. K. Shukla & A. Mamun 2002], (*) [DeAngelis 1992], (**) [G. E. Morfill *et al.* 1998] www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3rd Hellenic School of Fusion Physics and Technology, 2004

Dust in fusion machines (e.g. Tokamaks) Observation of dust near the tokamak walls (bottom, *divertor* area):

Carbon deposition in divertor regions of JET and ASDEX UPGRADE



Achim von Keudell (IPP, Garching)

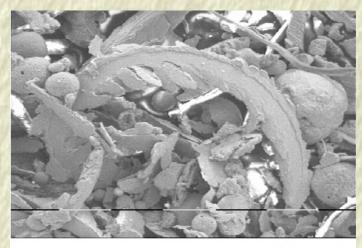
V. Rohde (IPP, Garching)

(after K. MATYASH, Max Planck Institüt - Univ. Greifswald).

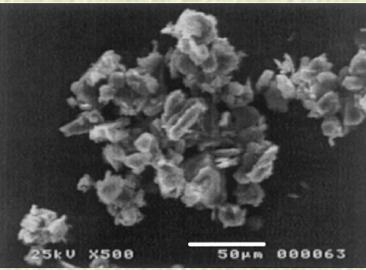
www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

Occurrence of dust (+ DP) in fusion devices

- Post-operation collection of DP near the reactor walls (*divertor* area);
- Dust reported in: JIPPT-IIU 1997, TEXTOR 1999, JET 1999, TORE-SUPRA 2001, TFTR 2001, ASDEX-UPGRADE 2003...
- Material: Carbon (graphite composites), tungsten, berellium, ... [Rubel et al. Nucl.Fus. 41, 1087 (2001)]



----- 0.1 mm www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf



 Issues of importance, regarding dust in fusion devices : Fact: Dust grains in Tokamaks may be charged and ferromagnetic; interact with E/M fields;

- □ Fact: Impact on reactor operation \rightarrow disruptions, ... → experimental study at JIPPT-IIU [Narihara et al., 1997]; also ...
- □ Fact: Possible impact on safety: carbon dust absorbs radioactive tritium ¹₃H [Rubel 2001], [Federici *et al.* 2000, 2001]; *thus* ...
- Fact: Impurity production is related to Tritium inventory;
- Phenomenology: possible interaction with wave modes e.g. ELMs [Tsytovich-Winter 1998, Rubel et al. 2001, Federici et al. 2001]; impurity inwards drift reported in JET SOL [J. P. Coad et al. 1999];

Aim: Understanding (and control of) the dynamics of dust may be a major issue involved in ITER design [Federici et al. 2000, 2001].
www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

Some unique features of the Physics of Dusty Plasmas:

- Complex plasmas are overall charge neutral; most (sometimes all!) of the negative charge resides on the microparticles;
- □ The microparticles can be *dynamically dominant*: mass density $\approx 10^2$ times higher than the neutral gas density and $\approx 10^6$ times higher than the ion density !
- □ Studies in *slow motion* are possible due to high M i.e. *low* Q/M ratio (e.g. dust plasma frequency: $\omega_{p,d} \approx 10 - 100$ Hz);
- The (large) microparticles can be visualised individually and studied at the kinetic level (with a digital camera!);
- □ Dust charge ($Q \neq const.$) is now a dynamical variable, associated to a new collisionless damping mechanism;

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3rd Hellenic School of Fusion Physics and Technology, 2004

(...continued) More "heretical" features are:

Important gravitational (compared to the electrostatic) interaction effects; gravito-plasma physics; gravito-electrodynamics; Jeans-type (gravitational) plasma instabilities etc. [Verheest PPCF 41 A445, 1999]

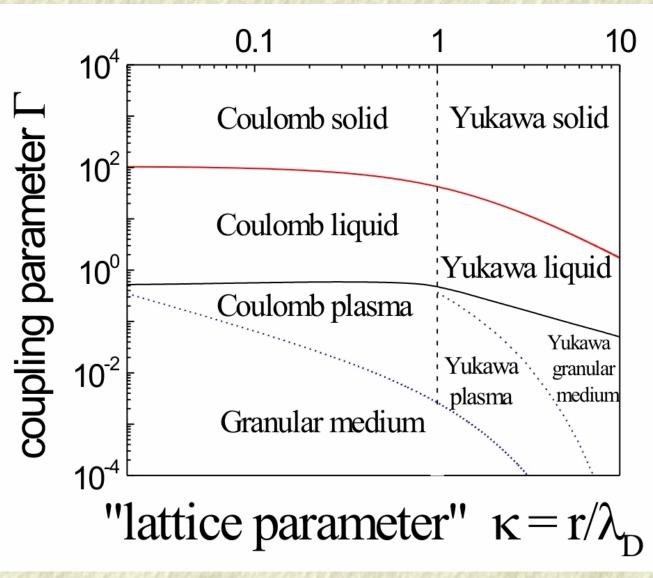
Complex plasmas can be strongly coupled and exist in "liquid" (1 < Γ < 170) and "crystalline" (Γ > 170 [ΙκεΖΙ 1986]) states, depending on the value of the effective coupling (plasma) parameter Γ;

$$\Gamma_{eff} = \frac{\langle E_{potential} \rangle}{\langle E_{kinetic} \rangle} \sim \frac{Q^2}{r T} e^{-r/\lambda_D}$$

(r: inter-particle distance, T: temperature, λ_D : Debye length).

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3rd Hellenic School of Fusion Physics and Technology, 2004

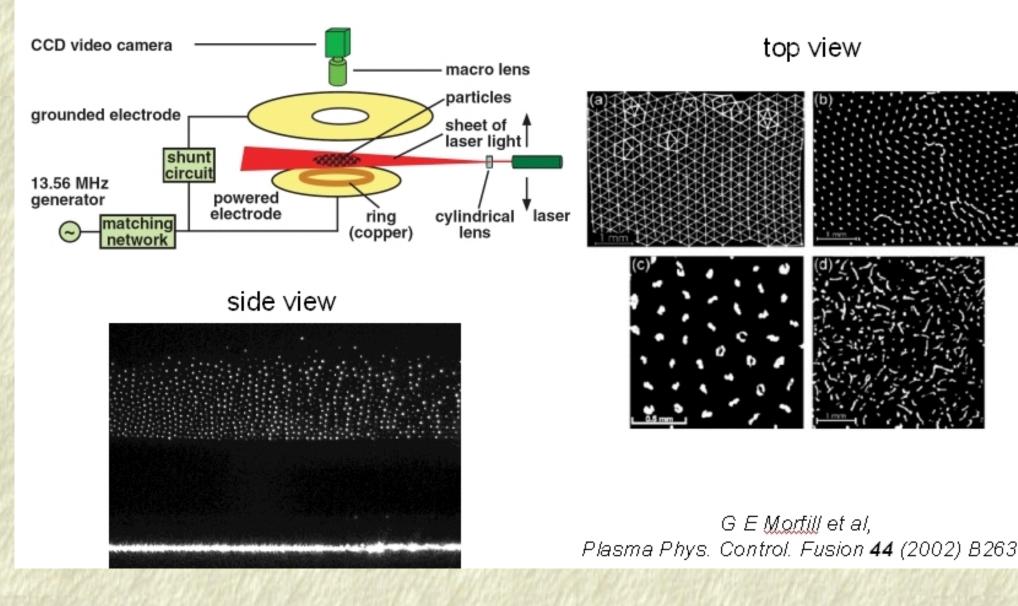
Phase diagram of (complex) charged matter



(after G. E. MORFILL, Max Planck Institüt - CIPS).

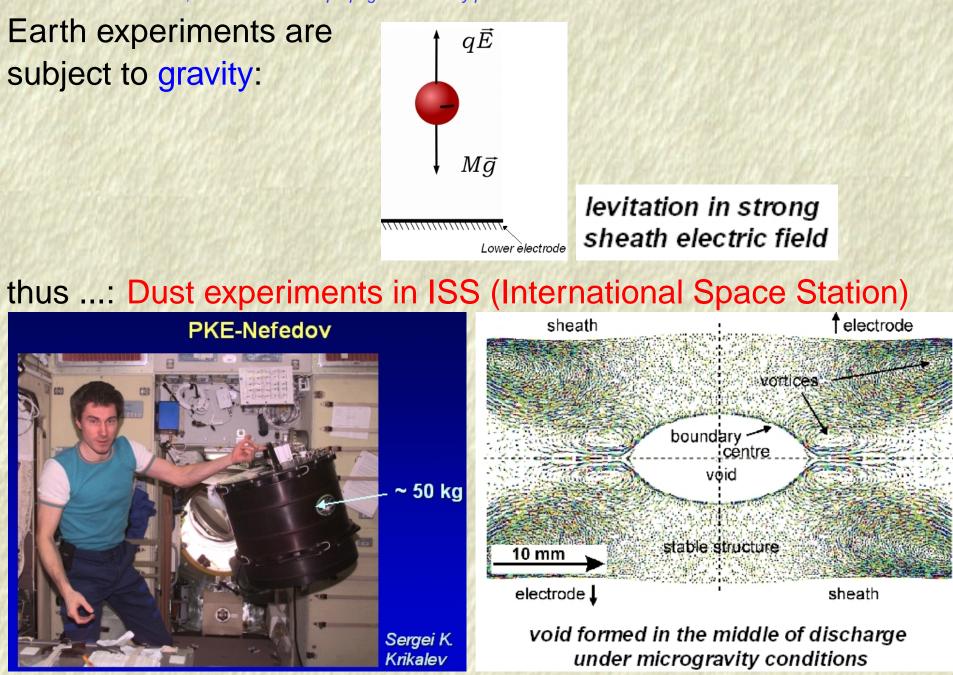
www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

Dust laboratory experiments on Earth:



www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3/

I. Kourakis & P. K. Shukla, Electrostatic wave propagation in dusty plasmas



(Online data from: Max Planck Institüt - CIPS). www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

B. Dust ion–acoustic waves (DIAW)

A pedagogical paradigm: consider Ion - Acoustic Waves (IAWs):

lon density n_i (continuity) equation:

Mean velocity \mathbf{u}_i equation:

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \,\mathbf{u}_i) = 0 \tag{1}$$

$$\frac{\partial \mathbf{u}_i}{\partial t} + \mathbf{u}_i \cdot \nabla \mathbf{u}_i = -\frac{q_i}{m_i} \nabla \phi - \frac{1}{m_i n_i} \nabla p_i$$
(2)

Pressure p_i equation:

$$\frac{\partial p_i}{\partial t} + \mathbf{u}_i \cdot \nabla p_i = -\gamma \, p_i \, \nabla \cdot \mathbf{u}_i \tag{3}$$

 $(\gamma = (f+2)/f = c_P/c_V$: ratio of specific heats e.g. $\gamma = 3$ for 1d, $\gamma = 2$ for 2d, etc.) The potential ϕ obeys *Poisson's* eq.:

$$\nabla^2 \phi = -4\pi \sum_{\alpha=e,i,d} q_\alpha n_\alpha = 4\pi \left(n_{e,0} e^{e\phi/k_B T_e} - q_i n_i - q_d n_{d,0} \right)$$
(4)

Dust ion-acoustic waves (cont.)

- Dispersion relation (cf. textbooks):

 $\omega \approx c_{diaw}k$ (for $\lambda \gg \lambda_{\rm D}$)

where both $v_{ph} = \omega/k$ and $v_g = \partial \omega/\partial k$ are given by

$$c_{diaw} = \omega_{p,i} \lambda_{D,e} = \left(\frac{n_{i,0}}{n_{e,0}}\right)^{1/2} \left(\frac{k_B T_e}{m_i}\right)^{1/2}$$

- Now, consider the neutrality condition at equilibrium $(Z_i = 1)$: $n_{i,0} q_i - n_{e,0} e + n_{d,0} q_d = 0 \Rightarrow \frac{n_{i,0}}{n_{e,0}} = 1 - sZ_d \frac{n_{d,0}}{n_{e,0}}$ where $q_d = sZ_d e$; $s = \text{sgn}q_d = q_d/|q_d| = \pm 1$;

- Result: significant phase velocity modification of IAWs

 \rightarrow DIAWs !!!

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

3rd Hellenic School of Fusion Physics and Technology, 2004

 $(\rightarrow$ See poster).

C. Dust-acoustic waves (DAW)

(Theoretical prediction: [RAO et al. 1990]; experimental confirmation: [BARKAN et al. 1995]).

(i) (Linear) characteristics of DAWs

– Dust is the dynamical element; e & i practically in Maxwellian equilibrium:

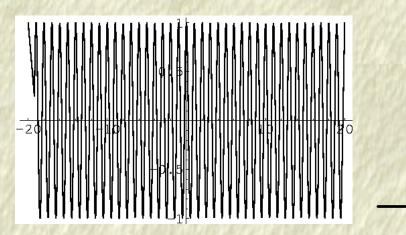
$$n_e \approx n_{e,0} e^{e\phi/k_B T_e}, \qquad n_i \approx n_{i,0} e^{-Z_i e\phi/k_B T_e}$$

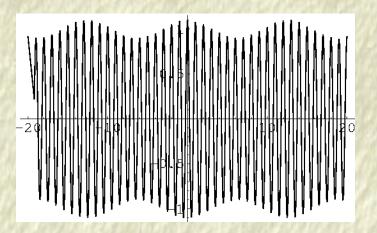
- *Extremely* low frequency waves: $\omega \approx c_{daw}k$ (for $\lambda \gg \lambda_D$) where

$$c_{daw} \sim \left(\frac{n_{d,0}}{n_{i,0}}\right)^{1/2} \left(\frac{k_B T_i}{m_d}\right)^{1/2}$$

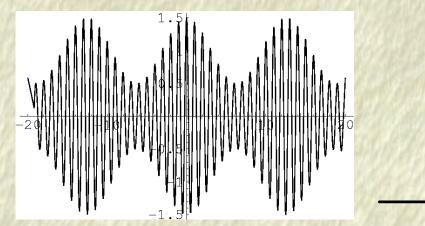
(Typically: $\omega \sim 10 \,\mathrm{Hz}$; $\lambda \sim 0.5 \,\mathrm{mm}$; $c_{daw} \sim 5 - 10 \,\mathrm{cm/s}$);

Intermezzo: The mechanism of *wave amplitude modulation* The *amplitude* of a harmonic wave may vary in space and time:

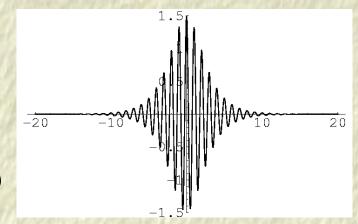


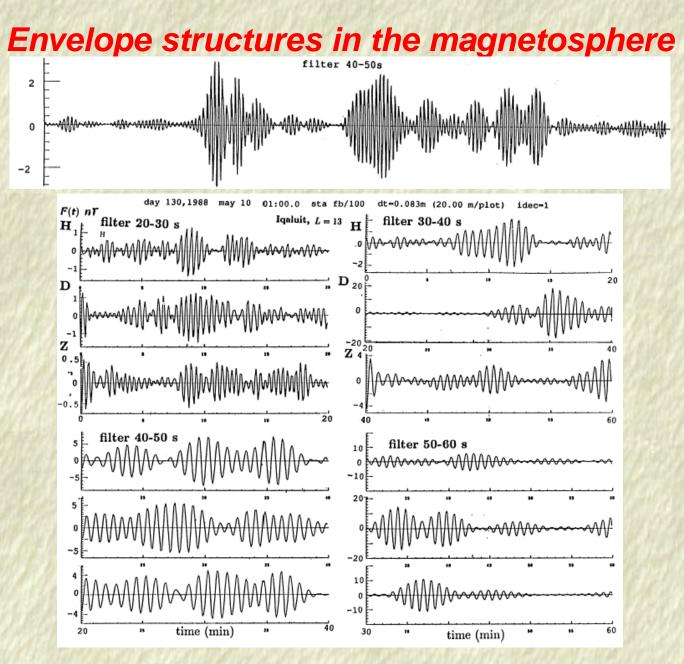


This *modulation* (due to nonlinearity) may be *strong* enough to lead to wave *collapse* or formation of *envelope solitons*:



www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf





(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)])

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

A dust-fluid model for DAWs

Density n_d (continuity) equation:

$$\frac{\partial n_d}{\partial t} + \nabla \cdot (n_d \, \mathbf{u}_d) = 0 \tag{5}$$

Mean velocity \mathbf{u}_d equation:

$$\frac{\partial \mathbf{u}_d}{\partial t} + \mathbf{u}_d \cdot \nabla \mathbf{u}_d = -\frac{q_d}{m_d} \nabla \phi - \frac{1}{m_d n_d} \nabla p_d$$
(6)

Pressure p_d equation: [(*) Warm vs. Cold Fluid model] $\frac{\partial p_d}{\partial t} + \mathbf{u}_d \cdot \nabla p_d = -\gamma \, p_d \, \nabla \cdot \mathbf{u}_d$ (7)

 $(\gamma = (f+2)/f = c_P/c_V$: ratio of specific heats e.g. $\gamma = 3$ for 1d, $\gamma = 2$ for 2d, etc.) The potential ϕ obeys *Poisson's* eq.:

$$\nabla^2 \phi = -4\pi \sum_{\alpha=e,i,d} q_{\alpha} n_{\alpha} = 4\pi \left(n_e e - q_i n_i - q_d n_d \right)$$
 (8)

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

(ii) Amplitude modulation – reductive perturbation theory

- 1st step. Define *multiple scales* (*fast and slow*) i.e. (in 2d)

$$X_{0} = x, X_{1} = \epsilon x, X_{2} = \epsilon^{2} x, ...$$

$$Y_{0} = y, Y_{1} = \epsilon y, Y_{2} = \epsilon^{2} y, ...$$

$$T_{0} = t, T_{1} = \epsilon t, T_{2} = \epsilon^{2} t, ...$$
(9)

- 2nd step. Expand near equilibrium:

$$n_d \approx n_{d,0} + \epsilon n_{d,1} + \epsilon^2 n_{d,2} + \mathbf{u}_d \approx \mathbf{0} + \epsilon \mathbf{u}_{d,1} + \epsilon^2 \mathbf{u}_{d,2} + \dots$$

$$p_d \approx p_{d,0} + \epsilon p_{d,1} + \epsilon^2 p_{d,2} + \dots$$

$$\phi \approx \mathbf{0} + \epsilon \phi_1 + \epsilon^2 \phi_2 + \dots$$

($\epsilon \ll 1$ is a smallness parameter).

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

Reductive perturbation technique (continued)

– 3rd step. Project on Fourier space, i.e. consider $\forall m = 1, 2, ...$

$$S_m = \sum_{l=-m}^m \hat{S}_l^{(m)} e^{il(\mathbf{k}\cdot\mathbf{r}-\omega t)} = \hat{S}_0^{(m)} + 2\sum_{l=1}^m \hat{S}_l^{(m)} \cos l(\mathbf{k}\cdot\mathbf{r}-\omega t)$$

for $S_m = n_m, \{u_{x,m}, u_{y,m}\}, p_m, \phi_m$, i.e. essentially:

 $n_1 = n_0^{(1)} + \tilde{n}_1^{(1)} \cos \theta$, $n_2 = n_0^{(2)} + \tilde{n}_1^{(2)} \cos \theta + \tilde{n}_2^{(2)} \cos 2\theta$, etc.

- 4rth step. Oblique modulation assumption: the slow amplitudes $\hat{\phi}_l^{(m)}$, etc. vary only along the *x*-axis: $\hat{S}_l^{(m)} = \hat{S}_l^{(m)}(X_j, T_j), \qquad j = 1, 2, ...$ while the fast carrier phase $\theta = \mathbf{k} \cdot \mathbf{r} - \omega t$ is now: $k_x x + k_y y - \omega t = k r \cos \alpha - \omega t.$ **First-order solution (** $\sim \epsilon^1$ **)** Substituting and isolating terms in m = 1, we obtain:

The dispersion relation $\omega = \omega(k)$:

$$\omega^2 = \omega_{p,d}^2 \frac{k^2}{k^2 + k_{D,eff}^2} + \gamma v_{th}^2 k^2$$
(10)

with $k_{D,eff} = \lambda_{D,eff}^{-1} = (\lambda_{D,e}^{-2} + \lambda_{D,i}^{-2})^{1/2}$, where

$$\omega_{p,d} = \left(\frac{4\pi n_{d,0} q_d^2}{m_d}\right)^{1/2}, \ \lambda_{D,\alpha} = \left(\frac{k_B T_\alpha}{4\pi n_{\alpha,0} q_\alpha^2}\right)^{1/2}, \ (\alpha = e, i)$$

 \Box The solution(s) for the 1st–harmonic amplitudes (e.g. $\propto \phi_1^{(1)}$):

$$n_1^{(1)} = s \frac{1+k^2}{\beta} \phi_1^{(1)} = \frac{1}{\gamma} p_1^{(1)} = \frac{k}{\omega \cos \theta} u_{1,x}^{(1)} = \frac{k}{\omega \sin \theta} u_{1,y}^{(1)}$$
(11)

Second-order solution ($\sim \epsilon^2$)

 \Box From m = 2, l = 1, we obtain the relation:

$$\frac{\partial \psi}{\partial T_1} + v_g \frac{\partial \psi}{\partial X_1} = 0 \tag{12}$$

where $-\psi = \phi_1^{(1)}$ is the potential correction ($\sim \epsilon^1$); $-v_g = \frac{\partial \omega(k)}{\partial k_x}$ is the group velocity along \hat{x} ; - the wave's envelope satisfies: $\psi = \psi(\epsilon(x - v_g t)) \equiv \psi(\zeta)$. \Box The solution, up to $\sim \epsilon^2$, is of the form: $\phi \approx \epsilon \psi \cos \theta + \epsilon^2(\phi_0^{(2)} + \phi_1^{(2)} \cos \theta + \phi_2^{(2)} \cos 2\theta) + O(\epsilon^3)$,

etc. (similar expressions for n_d , u_x , u_y , p_d).

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3rd Hellenic School of Fusion Physics and Technology, 2004

Third-order solution ($\sim \epsilon^3$)

 \Box Compatibility equation (from m = 3, l = 1), in the form of:

$$i\frac{\partial\psi}{\partial\tau} + P\frac{\partial^2\psi}{\partial\zeta^2} + Q|\psi|^2\psi = 0.$$
 (13)

i.e. a Nonlinear Schrödinger-type Equation (NLSE).

 \Box Variables: $\zeta = \epsilon(x - v_g t)$ and $\tau = \epsilon^2 t$;

Dispersion coefficient *P*:

$$P = \frac{1}{2} \frac{\partial^2 \omega}{\partial k_x^2} = \frac{1}{2} \left[\omega''(k) \cos^2 \alpha + \omega'(k) \frac{\sin^2 \alpha}{k} \right]; \quad (14)$$

□ Nonlinearity coefficient Q: ... A (lengthy!) function of k, angle α and T_e , T_i , ... → poster/text.

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3

Modulational (in)stability analysis

□ The NLSE admits the *harmonic wave solution*:

$$\psi = \hat{\psi} e^{iQ|\hat{\psi}|^2\tau} + \text{c.c.}$$

 \Box Perturb the amplitude by setting: $\hat{\psi} = \hat{\psi}_0 + \epsilon \hat{\psi}_{1,0} \cos{(\tilde{k}\zeta - \tilde{\omega}\tau)}$

□ We obtain the *(perturbation)* dispersion relation:

$$\tilde{\omega}^2 = P^2 \,\tilde{k}^2 \left(\tilde{k}^2 - 2\frac{Q}{P} |\hat{\psi}_{1,0}|^2 \right). \tag{15}$$

 \Box If PQ < 0: the amplitude ψ is stable to external perturbations;

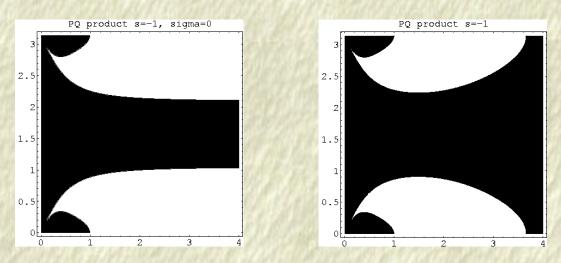
 \Box If PQ > 0: the amplitude ψ is *unstable* for $\tilde{k} < \sqrt{2\frac{Q}{P}}|\psi_{1,0}|$;

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf 3rd Hellenic School of Fusion Physics and Technology, 2004

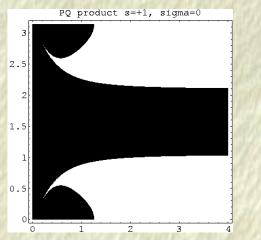
Stability profile: Angle α versus wavenumber k

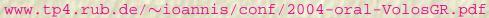
Typical values: $Z_d/Z_i \approx 10^3$, $T_e/T_i \approx 10$, $n_{d,0}/n_{i,0} \approx 10^{-3}$, $\gamma = 2$.

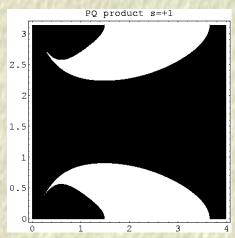
- Negative dust: s = -1; cold ($\sigma = 0$) vs. warm ($\sigma \neq 0$) fluid:



- The same plot for *positive dust* (s = +1):







(iii) Localized envelope excitations (solitons)

- □ The NLSE accepts various soliton solutions: $\psi = \rho e^{i\Theta}$; the *total* electric potential is then: $\phi \approx \epsilon \rho \cos(\mathbf{kr} - \omega t + \Theta)$ where the amplitude ρ and phase correction Θ depend on ζ, τ .
- Bright-type envelope soliton (pulse):

$$\rho = \rho_0 \operatorname{sech}\left(\frac{\zeta - v\tau}{L}\right), \qquad \Theta = \frac{1}{2P} \left[v\zeta - (\Omega + \frac{1}{2}v^2)\tau \right].$$
(16)

$$L = \sqrt{\frac{2P}{Q}} \frac{1}{\rho_0}$$
This is a propagating

¥ ¥¦¥ ¥

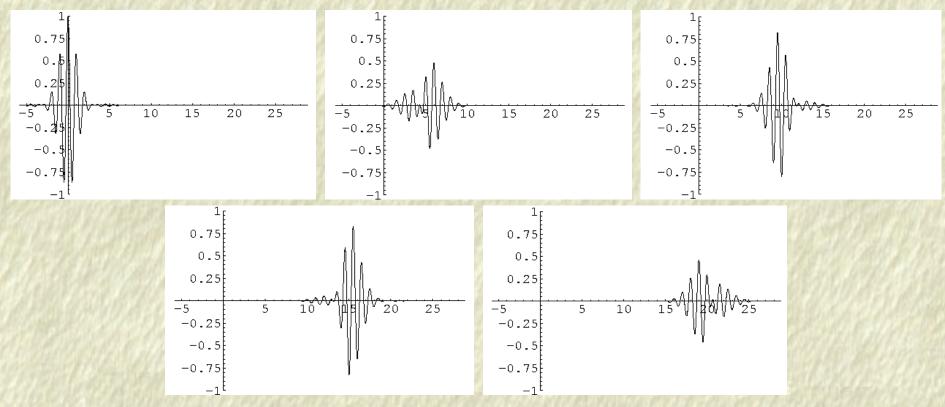
propagating (and *oscillating*) localized pulse:

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

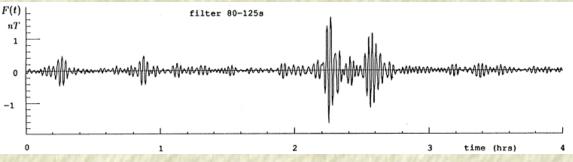
3rd Hellenic School of Fusion Physics and Technology, 2004

-10

Propagation of a bright envelope soliton (pulse)



Cf. electrostatic plasma wave data from satellite observations:



(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)])

www.tp4.rub.de/~ioannis/conf/2004-oral-VolosGR.pdf

Localized envelope excitations (part 2)

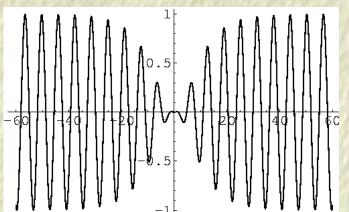
□ Dark–type envelope solution (*hole soliton*):

$$\rho = \pm \rho_1 \left[1 - \operatorname{sech}^2 \left(\frac{\zeta - v\tau}{L'} \right) \right]^{1/2} = \pm \rho_1 \tanh \left(\frac{\zeta - v\tau}{L'} \right),$$

$$\Theta = \frac{1}{2P} \left[v \zeta - \left(\frac{1}{2} v^2 - 2PQ\rho_1 \right) \tau \right]$$

$$L' = \sqrt{2 \left| \frac{P}{Q} \right|} \frac{1}{\rho_1}$$
(17)

This is a propagating localized hole (zero density void):



Localized envelope excitations (part 3)

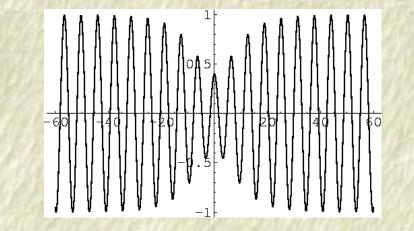
Grey–type envelope solution (*void soliton*):

$$\rho = \pm \rho_2 \left[1 - a^2 \operatorname{sech}^2 \left(\frac{\zeta - v \tau}{L''} \right) \right]^{1/2}$$

$$\Theta = \dots$$

$$L'' = \sqrt{2 \left| \frac{P}{Q} \right|} \frac{1}{a\rho_2}$$

This is a propagating *(non zero-density)* void:



E. Conclusions

- Dusty (or Complex) plasmas occur widely in space, laboratory and controlled nuclear fusion environments;
- In fusion devices, harnessing the dynamics of dust is among the important issues in large device (e.g. ITER) design;
- Electrostatic waves propagating in dusty plasmas are characterized by *modulational instability*; this is an intrinsic feature of nonlinear dynamics, which may lead to the ...
- Image: Image:
- □ ... explain energy localization phenomena observed in DP → a small step towards understanding Complex Plasmas.

