Introduction

Amplitude modulation, a well-known nonlinear mechanism dom-
inating wave propagation in nonlinear dispersive media, has been
widely investigated in the past, with respect to plasma electrostatic
modes, e.g. ion-acoustic waves (IAW), and experiments have con-
firmed those studies |1|. However, little has been done as far as
dusty plasma (DP) [2] is concerned, in this respect |3]. This study
aims in partly filling this gap.

A. Dust-acoustic waves

The dust-acoustic wave (DAW) |2] is a very low frequency, purely
DP mode (i.e. absent without dust), representing dust grain os-
cillations against a thermalized background of electrons and ions.
It is characterized by a wvery low phase velocity: vy paw <
Uph.e» Uph,i and frequency below the dust plasma frequency wy, p.

The model

We consider a collisionless, unmagnetized, fully tonized dusty
plasma, consisting of electrons e (mass m, charge e), ions ¢ (mass
m;, charge q; = +Z;e) and heavy dust grains d (mass mg and
charge q; = s Z e assumed constant; s = sgn qg = +1).

The dust fluid moment-Poisson system of equations reads |1]:
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Eq. (1)is Poisson’s equation: V>® = —41 S go na, close to the

Maxwellian state assumed for both e and ¢, 1.e. ne ~ n, g ee®/kpTe

ni ~ n; e~ Zie®/kpT; (Ty: temperature, of species o = e, 7).
Overall neutrality is assumed at equilibrium:

Ne0 — Zini ) — $Zqnqo = 0.

We have defined the reduced (dimensionless) quantities:

- dust density: n = nd/ndyg;

- dust mean velocity: u = [my/(kpTy)|Y*u, = u; /v,

- dust pressure: p = pa/po = pa/(ng okiTe)

- electric potential: ¢ = Z3e®/(kgTe);
=(f+2)/f=Cp/Cy (for f degrees of freedom).

Also, space and time are scaled over:

- the DP effective Debye length Ap orr =

)1/2
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(where Ap o = (kBTa/4mn0005) " °, a = €,1) and
- the inverse DP plasma frequency wz;cll = (4ﬂnd70q§/md)_1/2.

- The dimensionless parameters appearing in (1) are
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and 3 = (CD/vd)Q, where cp = Ap, f pwp g 18 the DA speed [2].
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Alternatively, one has: a ~ 3 T, R 6_ZCQZT_Z2 = za“ and
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we have defined the typical dust parameters
0= (Zqnao)/(Zinip),  p=neo/(Zm;p)=1+s9.

Retain: 0 <y < 1 (> 1) corresponds to negative (positive) dust.
Finally, o = py/(ngokpTe) (= 1 here, for the above choice for py).

Multiple scales (reductive) perturbation method.

Let S be the state (column) vector (n, u, p, gb)T;
the equilibrium state is S(0) — (1, 0, 1, O)T
We shall consider small deviations by taking (e < 1)
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We define the stretched (slow) space and time variables [5]: ¢ =
e(x —\t), T =€t (AER); the (fast) carrier phase is 6] =
k - r — wt (arbitrary propagation direction), while the harmonic
amplitudes vary slowly along x:
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Substituting into (1), one obtains, successively (details in [1]):
- the first harmonics of the perturbation:
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- the compatibility condition (DAW dispersion relation [2]):
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- the 2nd order contributions: S(gQi »: — harmonic generation !!!

- the compatibility condition, forn =2, [ = 1:
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A is therefore the group velocity in the modulation (x—) direction.

A =uvy(k) = — W'(k)cos = — i [( +w] cos B :

Derivation of the Nonlinear Schrodinger Equation

Proceeding to order ~ €3, the equations for I = 1 vield an explicit
compatibility condition in the form of the Nonlinear Schrodinger
Fquation
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P is related to the curvature of the dispersion curve (3).
- Nonlinearity coefficient () = Z;L‘:() (), due to carrier wave
self-interaction; Q) /2 is due to the Oth/2nd order harmonics and
()1 is related to the cubic term in (1).
P, Q (too lengthy!) can be found in full detail in [4].
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- Dispersion coefficient P = 107w _ %[w”(k) cos O + W' (k)SL 0.

Stability analysis

Linearizing around the monochromatic (Stokes wave) solution of

the NLSE (4): ¢ = weZQW + c.c. i.e. setting
b = o + edhy el

we obtain the (perturbation) dispersion relation:
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The wave will be stable (V /%) if the product P() is negative.
For positive PQ > 0, instability sets in for ke = \/2%\@21’0\;

the mstablhty growth rate o = [Imw(k )|, reaches its maximum

2 for k = kcf,a/\/_

Localized envelope excitations

— Bright-type solitons (pulses) for P@ > 0:
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Figure 1. Bright type (pulse) soliton solution of the NLS equation, for two
different parameter sets (PQ > 0).

— Dark/grey type solitons (holes) for PQ) < 0:
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Figure 2. Soliton solutions of the NLS equation for PQ < 0 (holes); these
excitations are of the: (a) dark type, (b) grey type. Notice that the amplitude

never reaches zero in (b).

S0, essentially:
- P() > 0: Unstable linear wave, bright-type excitations;

- PQ < 0: Stable linear wave, dark/grey-type excitations.

Numerical results

— Existence of two critical wavenumber k. 1 2, between which
instability may occur (see Figs. 4).

— Dramatic modulation obliqueness effect!: kg1 9 depend on 6.
— Important temperature effect on kml,g; see Fig. 4.

— Influence of dust concentration and sign on the stability profile
and the soliton features.

— Small-angle modulated waves are stable for long wavelengths.

See figures 3, 4, where: o« = 5-1073, o/ & 2042/3 ~ 1.6-107° and
3 ~ 100, corresponding to Z;/Z; = 10° and T, /T; = 10.
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Figure 3. The DAW coeflicient product P() = 0 curve is represented against
normalized wavenumber k/kp (in abscissa) and angle 6 (between 0 and );
the area in black (white) represents the region in the (k — ) plane where PQ)
is negative (positive); instability occurs for values inside the white area. Here
o =0 (cold dust). (a) negative dust (s = —1). (b) positive dust (s = +1).
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Figure 4. Same as Fig. 3, taking 0 = 1 (hot dust DAW model).

B. Dust-ion acoustic waves (DIAW)

Dust-ion acoustic waves (DIAW) 2] are the DP analogue of the ion-
acoustic electrostatic wave (IAW), 6], where inertial ions oscillate
against a background of thermal electrons and massive dust grains.
The DIAW is characterized by vy, ; < vyp < vy and w), g <
wprAw <K wp;. The model equations are identical to (1) (setting
a — —a & s = 1 therein |7, 8]), with the new definitions:

- jon density: n = n;/n;; ion pressure: p = p;/(n;okpTe);

- jon mean velocity: u = [m;/(kgT))]"?u; = u;/Cs;

- electric potential: ¢ = Z;e®/(kpgTle); o ="T;/T,

Also, space and time are scaled over:

- the electron Debye length Ap , = (kBT6/47Tne e )1/2 and

- the characteristic time-scale )\ D.e/Cs =W
- Now, the dimensionless parameters in (1) are
v=1/(2%;), o =1/(6Z7) and = Zin;o/neo = Zi/ .
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Figure 5. DIAW: similar to Figs. 3, 4, for two limit cases: (a) u = 1 i.e. in the
dust-free(e—i plasma) limit; (b) = 0.05 (high negative dust concentration):

notice the generation of unstable regions for high 6. Here 0 = 0 (cold ions).

u=0.5 (negative dust)
u=1.0 (NO dust)
u=1.0 (NO dust)
u=0.5 (negative dust)
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Figure 6. (a) Notice the effect of negative dust (0 = qq0/qi0 = 0.51.e. p=0.5
here): lower k., 1 and finite temperature: lower k..o (0 = 0.05 here: warm ions);
cf. Fig. ba where =1, 0 = 0. (b) The two critical wavenumbers k., 1/k. o are

depicted against normalized ion temperature o = T; /T, for DP with ¢; < 0.
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