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Introduction

Amplitude modulation, a well-known nonlinear mechanism dom-
inating wave propagation in nonlinear dispersive media, has been
widely investigated in the past, with respect to plasma electrostatic
modes, e.g. ion-acoustic waves (IAW), and experiments have con-
firmed those studies [1]. However, little has been done as far as
dusty plasma (DP) [2] is concerned, in this respect [3]. This study
aims in partly filling this gap.

A. Dust-acoustic waves

The dust-acoustic wave (DAW) [2] is a very low frequency, purely
DP mode (i.e. absent without dust), representing dust grain os-
cillations against a thermalized background of electrons and ions.
It is characterized by a very low phase velocity : vph,DAW �
vph,e, vph,i and frequency below the dust plasma frequency ωp,D.

The model

We consider a collisionless, unmagnetized, fully ionized dusty
plasma, consisting of electrons e (mass m, charge e), ions i (mass
mi, charge qi = +Zie) and heavy dust grains d (mass md and
charge qd = sZde assumed constant; s = sgn qd = ±1).
The dust fluid moment-Poisson system of equations reads [4]:

∂n

∂t
+∇ · (nu) = 0 ,

∂u

∂t
+ u · ∇u = −s∇φ− σ

n
∇p ,

∂p

∂t
+ u · ∇p = −γ p∇ · u ;

and
∇2φ = φ− αφ2 + α′ φ3 − s β (n− 1) ; (1)

Eq. (1) is Poisson’s equation: ∇2Φ = −4π
∑
qα nα, close to the

Maxwellian state assumed for both e and i, i.e. ne ≈ ne,0 e
eΦ/kBTe,

ni ≈ ni,0 e
−Zi eΦ/kBTi (Tα: temperature, of species α = e, i).

Overall neutrality is assumed at equilibrium:

ne,0 − Zini,0 − sZdnd,0 = 0 .

We have defined the reduced (dimensionless) quantities:
- dust density : n = nd/nd,0;

- dust mean velocity : u = [md/(kBTe)]
1/2ud ≡ uid/vd;

- dust pressure: p = pd/p0 = pd/(nd,0kBTe);
- electric potential : φ = ZdeΦ/(kBTe);
- γ = (f + 2)/f = CP/CV (for f degrees of freedom).
Also, space and time are scaled over:
- the DP effective Debye length λD,eff = (λ−2

D,e + λ−2
D,i)

−1/2

(where λD,α = (kBTα/4πnα,0q
2
α)1/2, α = e, i) and

- the inverse DP plasma frequency ω−1
p,d = (4πnd,0q

2
d/md)

−1/2.

- The dimensionless parameters appearing in (1) are
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and β =
(
cD/vd

)2
, where cD = λDeffωp,d is the DA speed [2].

Alternatively, one has: α ≈ Zi
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, α′ ≈ Z2
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for µ� Zi
Te
Ti

;

we have defined the typical dust parameters

δ = (Zdnd,0)/(Zini,0) , µ = ne,0/(Zini,0) = 1 + s δ .

Retain: 0 ≤ µ < 1 (µ > 1) corresponds to negative (positive) dust.
Finally, σ = p0/(nd,0kBTe) (= 1 here, for the above choice for p0).

Multiple scales (reductive) perturbation method.

Let S be the state (column) vector (n, u, p, φ)T ;

the equilibrium state is S(0) = (1, 0, 1, 0)T .
We shall consider small deviations by taking (ε� 1)

S = S(0) + εS(1) + ε2 S(2) + ... = S(0) +

∞∑
n=1

εnS(n) .

We define the stretched (slow) space and time variables [5]: ζ =
ε(x− λ t) , τ = ε2 t (λ ∈ <); the (fast) carrier phase is θ1 =
k · r − ωt (arbitrary propagation direction), while the harmonic
amplitudes vary slowly along x:

Sj(n) =

∞∑
l=−∞

S
(n)
j,l (ζ, τ ) eil(k·r−ωt)

(S
(n)
j,−l = S

(n)
j,l

∗
); wavenumber k is (kx, ky) = (k cos θ, k sin θ).

→ oblique modulation!

Substituting into (1), one obtains, successively (details in [4]):
- the first harmonics of the perturbation:

n
(1)
1 = s

1 + k2

β
φ

(1)
1 =

1

γ
p
(1)
1 =

1

ω
k · u(1)

1 =
k

ω cos θ
u

(1)
1,x , (2)

- the compatibility condition (DAW dispersion relation [2]):

ω2 =
β k2

k2 + 1
+ γ σ k2 , (3)

- the 2nd order contributions: S
(2)
0,1,2: → harmonic generation !!!

- the compatibility condition, for n = 2, l = 1:

λ = vg(k) =
∂ω

∂kx
= ω′(k) cos θ =

k

ω

[
1

(1 + k2)2
+ γσ

]
cos θ ;

λ is therefore the group velocity in the modulation (x−) direction.

Derivation of the Nonlinear Schrödinger Equation

Proceeding to order ∼ ε3, the equations for l = 1 yield an explicit
compatibility condition in the form of the Nonlinear Schrödinger
Equation

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0 . (4)

- Dispersion coefficient P = 1
2
∂2ω
∂k2

x
= 1

2

[
ω′′(k) cos θ+ω′(k)sin2 θ

k

]
;

P is related to the curvature of the dispersion curve (3).

- Nonlinearity coefficient Q =
∑4
j=0Qj, due to carrier wave

self-interaction; Q0/2 is due to the 0th/2nd order harmonics and

Q1 is related to the cubic term in (1).
P , Q (too lengthy !) can be found in full detail in [4].

Stability analysis

Linearizing around the monochromatic (Stokes wave) solution of

the NLSE (4): ψ = ψ̂ eiQ|ψ̂|
2τ + c.c. i.e. setting

ψ̂ = ψ̂0 + ε ψ̂1,0 e
i(k̂ζ−ω̂τ )

we obtain the (perturbation) dispersion relation:

ω̂2 = P 2 k̂2
(
k̂2 − 2

Q

P
|ψ̂1,0|2

)
.

The wave will be stable (∀ k̂) if the product PQ is negative.

For positive PQ > 0, instability sets in for k̂cr =
√

2QP |ψ̂1,0|;
the instability growth rate σ = |Imω̂(k̂)|, reaches its maximum
value σmax = |Q| |ψ̂1,0|2 for k̂ = k̂cr/

√
2.

Localized envelope excitations

→ Bright-type solitons (pulses) for PQ > 0:

Figure 1. Bright type (pulse) soliton solution of the NLS equation, for two

different parameter sets (PQ > 0).

→ Dark/grey type solitons (holes) for PQ < 0:

Figure 2. Soliton solutions of the NLS equation for PQ < 0 (holes); these

excitations are of the: (a) dark type, (b) grey type. Notice that the amplitude

never reaches zero in (b).

So, essentially:
- PQ > 0: Unstable linear wave, bright-type excitations;

- PQ < 0: Stable linear wave, dark/grey-type excitations.

Numerical results

→ Existence of two critical wavenumber kcr,1,2, between which
instability may occur (see Figs. 4).
→ Dramatic modulation obliqueness effect!: kcr,1,2 depend on θ.
→ Important temperature effect on kcr,1,2; see Fig. 4.
→ Influence of dust concentration and sign on the stability profile
and the soliton features .
→ Small–angle modulated waves are stable for long wavelengths.

See figures 3, 4, where: α = 5 · 10−3, α′ ≈ 2α2/3 ≈ 1.6 · 10−5 and
β ≈ 100, corresponding to Zd/Zi = 103 and Te/Ti = 10.

Figure 3. The DAW coefficient product PQ = 0 curve is represented against

normalized wavenumber k/kD (in abscissa) and angle θ (between 0 and π);

the area in black (white) represents the region in the (k − θ) plane where PQ

is negative (positive); instability occurs for values inside the white area. Here

σ = 0 (cold dust). (a) negative dust (s = −1). (b) positive dust (s = +1).

Figure 4. Same as Fig. 3, taking σ = 1 (hot dust DAW model).

B. Dust-ion acoustic waves (DIAW)

Dust-ion acoustic waves (DIAW) [2] are the DP analogue of the ion-
acoustic electrostatic wave (IAW), [6], where inertial ions oscillate
against a background of thermal electrons and massive dust grains.
The DIAW is characterized by vth,i � vph � vth,e and ωp,d �
ωDIAW � ωp,i. The model equations are identical to (1) (setting
α→ −α̃ & s = 1 therein [7, 8]), with the new definitions:
- ion density : n = ni/ni,0; ion pressure: p = pi/(ni,0kBTe);

- ion mean velocity : u = [mi/(kBTi)]
1/2ui ≡ uid/cs;

- electric potential : φ = ZieΦ/(kBTe); σ = Ti/Te
Also, space and time are scaled over:
- the electron Debye length λD,e = (kBTe/4πne,0e

2)1/2 and

- the characteristic time-scale λD,e/cs ≡ ω−1
p,e

mi
me

.

- Now, the dimensionless parameters in (1) are
α̃ = 1/(2Zi), α′ = 1/(6Z2

i ) and β = Z2
i ni,0/ne,0 = Zi/µ.

Figure 5. DIAW: similar to Figs. 3, 4, for two limit cases: (a) µ = 1 i.e. in the

dust-free(e–i plasma) limit; (b) µ = 0.05 (high negative dust concentration):

notice the generation of unstable regions for high θ. Here σ = 0 (cold ions).

Figure 6. (a) Notice the effect of negative dust (δ = qd,0/qi,0 = 0.5 i.e. µ = 0.5

here): lower kcr,1 and finite temperature: lower kcr,2 (σ = 0.05 here: warm ions);

cf. Fig. 5a where µ = 1, σ = 0. (b) The two critical wavenumbers kcr,1/kcr,2 are

depicted against normalized ion temperature σ = Ti/Te, for DP with qd < 0.
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