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Introduction

Dusty (or Complex) plasmas (DP) [1, 2] are known to exist in
strongly–coupled states, possibly leading to the formation of crys-
talline configurations (lattices, quasi-crystals) in 1d, 2d or 3d.
These crystals have been shown (both theoretically and experimen-
tally) to sustain the propagation of plane waves in the longitudinal
(in plane, acoustic mode, ∼ x̂) and transverse (in plane shear,
acoustic mode, ∼ ŷ); off-plane optic mode, ∼ ẑ) directions [2]. In
the following, we focus on optic-mode-like transverse oscillations
(∼ ẑ).
This study [3] is devoted to modulational instability (MI), a well-
known mechanism of energy localization occurring during wave
propagation in nonlinear dispersive media. This mechanism has
been thoroughly studied in the past, mainly in solid state systems,
where nonlinearities of the substrate potential and/or particle cou-
pling may destabilize waves and lead to localized excitations.

Transverse dust-lattice linear oscillations

In addition to longitudinal dust-lattice waves (LDLW) [2, 4], DP
crystals support low-frequency optical-mode-like oscillations in the
transverse (off plane) direction (TDLW) [2, 3, 5]:

Figure 1. Off-plane dust grain motion in a single dust lattice.

The motion of a dust grain (mass M and charge Q assumed con-
stant; lattice constant r0) obeys the equation:

M
d2δzn

dt2
= M ω2

0 (2 δzn − δzn−1 − δzn+1) + Fe −Mg (1)

where δzn = zn − z0 denotes the small displacement of the n−th
grain around the equilibrium position z0, in the transverse direc-
tion (z−), propagating in the longitudinal (x−) direction;
ω0 is e.g. the DP transverse oscillation ‘eigenfrequency’:
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resulting from the Debye interaction potential [6].
Solving Poisson’s equation, one obtains the electric field, which is
due to the sheath potential and the wake potential generated by
supersonic ion flow towards the electrode. The total field E(z) can
be developed around z0, so the electric force Fe reads:

Fe(z) ≈ Fe(z0) + γ(1) δz + γ(2) (δz)2 + γ(3) (δz)3 +O((δz)4) .

All coefficients are defined via derivatives of the exact field form [3].
The zeroth-order term balances gravity at z0;
−γ(1) = γ ≡ M ω2

g is the effective width of the potential well.

Considering phonons of the type: xn = An exp[i (knr0−ωt)]+c.c.,
an optical-mode-like dispersion relation is obtained:

ω2 = ω2
g − 4ω2

0 sin2 kr0

2
(3)

We do not go into further details concerning this linear regime,
since it is covered in the references.

Nonlinear wave modulation - harmonic generation

Limiting ourselves to the continuum (long wavelength λ) limit (i.e.
k r0 � 1), Eq. (1) takes the form:

d2u

dt2
+ c2

0
d2u

dx2
+ ω2

g u + α u2 + β u3 = 0 (4)

where we have set δz ≡ u(x, t) for simplicity;
c0 = ω0 r0 is a characteristic propagation velocity related to the
Debye potential (see (2));
the nonlinearity coefficients α, β are related to the electric field:
α = −γ(2)/M , β = −γ(3)/M .
We may now consider small-amplitude oscillations:

u = ε u1 + ε2 u2
2 + ...

at each site. Assuming the existence of multiple scales in time and
space, i.e. Xn = εn x, Tn = εn t (n = 0, 1, 2, ...), we develop the
derivatives in (4) in powers of a smallness parameter ε and then
collect the terms arising in successive orders [7].
This procedure leads to a solution of the type:

u(x, t) = ε (A ei θ+c.c.)+ ε2 α
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(5)
(θ = kx− ωt) where ω obeys a dispersion law of the form:

ω2 = ω2
g − c2

0 k2 (6)

(i.e. (3) linearized around k ≈ 0).

A Nonlinear Schrödinger Equation

The slowly-varying amplitude A = A(X1 − vg T1) moves at the

(negative) group velocity vg = dω/dk = −c2
0 k/ω i.e. in the direc-

tion opposite to the phase velocity (this so called backward wave
has been observed experimentally: see the discussion in [8]); it is
found to obey the Nonlinear Schrödinger (NLS) Equation:

i
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dT
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d2A

dX2
+ Q |A|2 A = 0 (7)

where the ‘slow’ variables {X, T} are {X1−vg T1, T2} respectively.
The dispersion coefficient P is related to the curvature of the
phonon dispersion curve (6) and the nonlinearity coefficient Q is
related to electric field nonlinearities:
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Notice that P < 0 here, given the parabolic form of ω(k)[9].

Modulational instability

In a generic manner, a modulated wave whose amplitude obeys the
NLS equation (7), is unstable to perturbations if P · Q > 0, i.e.
from (8) if: 10 γ2

(2)
− 9 γ(1) γ(3) < 0. To see this, one may first

check that the NLSE accepts the solution (Stokes’ wave):

A(X, T ) = A0 eiQ|A0|2T + c.c.

The standard (linear) stability analysis then shows that a linear
perturbation of frequency Ω and wavenumber κ will obey:

Ω2(κ) = P 2 κ2
(

κ2 − 2
Q

P
|A0|2

)
(9)

and is therefore expected to grow, for κ ≥ κcr = (Q/P )1/2 |A0| at
a rate attaining a maximum value of:

σmax = Q |A0|2

until the wave collapses. If P · Q < 0, this will never occur. This
mechanism is known as the Benjamin-Feir instability [10]

Localized envelope excitations

It is known that the NLSE (7) supports pulse-shaped localized
solutions (envelope solitons) of the bright (PQ > 0) or dark/grey
(PQ < 0) type [9]. The former (continuum breathers) are:

A = (2D/PQ)1/2 sech
[
(2D/PQ)1/2 (X − ve T )

]
×

exp
[
i ve (X − vc T )/2P

]
+ c.c. (10)

where ve (vc) is the envelope (carrier) velocity and D = (v2
e −

2 ve vc)/(4P 2); the latter (holes) are physically irrelevant here
(they correspond to infinite energy stored in the lattice).

Coupled DP layers

The above picture is strongly modified if a set of coupled DP lattices
is considered [12]. For two such coupled chains, (see fig. 2):

Figure 2. Off-plane dust grain motion in coupled dust lattices.

the equations of motion (lower/upper grain: 1/2) read [13, 14]:

M
d2δz1,n

dt2
= M ω2

0 (2 δz1,n − δz1,n−1 − δz1,n+1)− M ω2
g δz1,n

+ Γ11 (δz2,n − δz1,n) + Γ12 (δz2,n − δz1,n)2

M
d2δz2,n

dt2
= M ω2

0 (2 δz2,n − δz2,n−1 − δz2,n+1)− M ω2
g δz2,n

+ Γ21 (δz2,n − δz1,n) + Γ22 (δz2,n − δz1,n)2 ; (11)

Γij are functions of the interchain distance d, related to the electric
potential Φ1(z) (Φ2(z)) felt by the lower (upper) grain:

Γ11 = Q
d2Φ1(|z|)

d|z|2
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|z|=d

, Γ21 = −Q
d2Φ2(|z|)

d|z|2

∣∣∣∣
|z|=d

Note that the two potentials are not symmetric: Φ2(z) acting on
the upper particles due to the lower ones is a simple Debye-Hückel-
type potential, but Φ1(z) felt by the lower particles due to the
upper ones is modified by downwards ion flow [12]. The dispersion
relation obtained in the linear limit now consists of two distinct
dispersion branches, both given by (3) with gap frequencies equal

to ωg,1 = ωg and ωg,2 =
√

ω2
g + Γ11

M + Γ21
M [12, 13, 14]).

Figure 3. Bright type (pulse) soliton solution of the NLS equation, for two

different parameter sets (PQ < 0). The second type, where the envelope width

is not very different from the carrier wavelength, is the continuum analogue of

the (discrete) breathing modes studied in molecular chains [11].

In order ε3 one now obtains two coupled NLS (CNLS) Equations:

i
dA
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dX2
+ Q11 |A|2 A + Q12 |B|2 A = 0 ,

i
dB

dT
+ P

d2B
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+ Q21 |A|2 B + Q22 |B|2 B = 0 ; (12)

A, B are the first harmonic amplitudes in the two lattices [13].
The dispersion coefficient P = ω′′(k)/2 is given by (8);
the expressions for the (non-symmetric) nonlinearity matrix ele-
ments Qij, in fact complicated analytic functions related to inter-
action potentials Φ1, Φ2 are omitted here [12].
The linear stability analysis around the solution:

A(X,T ) = A0 ei(Q11|A0|2+Q12|B0|2) T + c.c.

B(X, T ) = B0 ei(Q22|B0|2+Q21|A0|2) T + c.c.

now results in the dispersion relation:
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where:
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ij(κ) = −2 P Qij P |A0||B0| , (i 6= j = 1, 2) (14)

(κ is the perturbation wavenumber); see that, for vanishing cross-
coupling Qij terms, dispersion relation (9) is recovered.
The investigation of conditions for Ω to possess an imaginary part
are now more perplex [12]. An enlarged instability region in κ val-
ues is obtained, in terms of Qij. The basic highlight of the analysis
is that: a stable (single-layer) wave mode (i.e. for PQii < 0)
may become unstable due to layer coupling .
Of course, one’s task now consists in assuming an explicit form for
the electrostatic potentials Φ1(z), Φ2(z) and deriving exact expres-
sions for the coefficients in the CNLS equations (12) above. The
conditions for instability will then be explicitly formulated in terms
of intrinsic plasma parameters.

In conclusion, we have seen seen that:
(i) modulational instability is, in principle, possible in transverse
DP lattice waves;
(ii) instability is potentially enhanced by inter-layer coupling;
(iii) energy localization via localized envelope excitations may oc-
cur in a DP lattice.
Appropriate experiments may hopefully confirm these results.

Of course, a more complete description should include factors ig-
nored in this simple model: collisions with neutral particles, dust
charge variations and transverse-to-longitudinal mode coupling.
Work in this direction is in progress and will be reported soon.
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