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I. INTRODUCTION

Periodic lattices of interacting particles are known from solid state physics to sustain, apart from propagating vibra-
tions (phonons), a variety of localized excitations, due to a mutual balance between the intrinsic nonlinearity of the
medium and mode dispersion. Such structures, “traditionally” sought for and investigated in a continuum approxima-
tion (i.e. assuming that the typical spatial variation scale far exceeds the typical lattice scale, e.g. the lattice constant
r0), include non-topological solitons (pulses), kinks (i.e. shocks or dislocations) and localized modulated envelope
structures (envelope solitons). Various generic nonlinear theories have been developed in order to investigate their
occurrence in different physical contexts [1, 2]. In addition to these (continuum) theories, which neglect discreteness
for the sake of analytical tractability, attention has been paid since more than a decade ago to highly localized vibrat-
ing structures [discrete breathers (DBs) or intrinsic localized modes (ILMs)], which owe their very existence to the
lattice discreteness itself. Following some pioneering ILM related works in the late 80’s e.g. [3–7], the breakthrough
in the theoretical study of DBs took place with the first breather existence proofs, by MacKay and Aubry [8, 9]
(who introduced the notion of the anticontinuous limit) and Flach [10] (using a homoclinic orbit approach). A large
number of studies has then followed, elucidating many aspects involved in the spontaneous formation, mobility and
interaction of DBs, both theoretically and experimentally; see in Refs. [11–14] for a review.

Recent studies of collective processes in a dust-contaminated plasma (DP) [15] have revealed a variety of new linear
and nonlinear collective effects, which are observed in laboratory and space dusty plasmas. An issue of particular
importance in DP research is the formation of strongly coupled DP crystals by highly charged dust grains, typically
in the sheath region above a horizontal negatively biased electrode in experiments [15, 16]. Typical low-frequency
oscillations are known to occur [16] in these mesoscopic dust grain quasi-lattices in the longitudinal (in-plane, acoustic
mode), horizontal transverse (in-plane) and vertical transverse (off-plane, inverse dispersive optic-like mode) directions.

Even though nonlinearity is an intrinsic feature of dust crystal dynamics, due to inter-grain (Debye-type, screened
electrostatic) nonlinear interactions, to mode coupling [17] or to the sheath environment, which is intrinsically non-
linear. Despite this fact, present day knowledge of nonlinear mechanisms related to dust lattice modes is admittedly
still in a preliminary stage. Small amplitude localized longitudinal excitations (described by a Boussinesq equation
for the longitudinal grain displacement u, or a Korteweg-deVries equation for the density ∂u/∂x) were considered
in Refs. [18] and generalized in Ref. [19]. Also, the amplitude modulation of longitudinal [20, 21] and transverse
(vertical, off-plane) [22, 23] dust lattice waves (LDLW, TDLW, respectively) was recently considered. All of these
studies have relied on a quasi-continuum description of the dust lattice dynamics.

The discrete character of dust-lattice oscillations has, to our best knowledge, not yet been studied, let alone a
recent first investigation which was restricted to single-mode transverse dust-breathers [28]. This study has examined
the properties of vertical (transverse) dust lattice vibrations. Most interestingly, the transverse (linear) dust lattice
mode is known to obey an inverse dispersion law: therefore the group velocity vg = ω′(k) and the phase velocity
vph = ω/k point towards opposite directions. The anharmonic character of the vertical on-site potential (confirmed
experimentally [24, 25]), in combination with the high discreteness of dust crystals, clearly suggested by experiments
[26, 27], may play an important role in mechanisms like energy localization, information storage and response to
external excitations. However, rather surprisingly, these aspects have hardly been investigated yet.

In this study, we are interested in investigating the conditions for the occurrence of discrete multi-site lattice
excitations (multibreathers) in a nonlinear (infinite sized) Klein-Gordon-like chain, which is characterized by an
inverse dispersion law. Nonlinearity is assumed to be supplied by a (non harmonic) on-site potential, while inter-
particle interactions are take to be linear. A negative coupling coefficient (“spring constant”) value is assumed, in
account of an inverse dispersion. Our results will eventually be applied in a description of real transverse dust-lattice
excitations, as observed in plasma discharge experiments.

II. EXISTENCE OF MULTIBREATHERS

We shall prove the existence of multibreather excitations in the system described above. The method we adopt is
based on the notion of analytical continuation from a suitable solution in the anticontinuous limit, as e.g. in [29].
The formalism used is described in Ref. [30]. A brief outline of the method is provided in the following.

Consider the Hamiltonian

H = H0 + εH1 =
∞∑

i=−∞

(
1
2
p2

i + Vi(xi)
)

+
ε

2

∞∑

i=−∞
(xi+1 − xi)2 (1)

with V ′(0) = 0 and V ′′(0) = ω2
p > 0, which leads to the equations of motion

ẍi = −V ′
i (xi) + ε (xi+1 − 2 xi + xi−1) ∀ i ∈ Z . (2)
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This is the classical Klein-Gordon chain, which is well known to support multibreather solutions.
As a matter of fact, the multibreather existence theorems, based on a continuation from a suitable anticontinuous

limit [30, 34] hold for an ε-neighborhood around zero, and are thus valid either for ε > 0 or for ε < 0, provided that
|ε| is sufficiently smaller than 1. Consider the integrable anticontinuous limit (ε = 0) where all the oscillators lie in
equilibrium apart from n + 1 “central” ones which lie on periodic orbits satisfying the resonance condition

ω0

k0
= · · · = ωn

kn
= ω , ki ∈ Z. (3)

At this limit, the motion of the central oscillators is described by

wi = ωit + ϑi

Ji = const. i = 0, . . . , n ,

where (w, J) are the action angle-variables of the uncoupled oscillators, ϑ is the initial angle and ω is the corresponding
angular frequency. The T = 2π/ω-periodic motion, which is described by (3), can be continued for ε > 0 small enough,
to form a T -periodic (n + 1)-site breather, provided that the following conditions hold:
1) The anharmonicity condition of the individual oscillators, i.e. dωi/dJi 6= 0, at least in the neighbourhood of the
specific periodic orbit.
2) The nonresonance condition: ωp 6= mω, ∀m ∈ N, where ωp denotes the linear (phonon) spectrum of the system
(in terms of a wave number p).
However, even if both of these conditions hold, not all the states of the anticontinuous limit will be continued to a
multibreather. In addition, the phases of the oscillators in this limit must be such that the system of equations

∂〈H1〉
∂zi

= 0 i = 1 . . . n (4)

has simple zeros, i.e. it is required that det
∣∣∂2〈H1〉/∂zi∂zj

∣∣ 6= 0, where zi = kiϑi−1 − ki−1ϑi; this is a generalization
of the notion of phase difference between the successive oscillators, in order to include resonances other that the 1 : 1.
Here,

〈H1〉 =
∫ T

0

H1dt (5)

is the average value of the perturbative term of the Hamiltonian calculated along a periodic orbit over a time-period.
As it is thoroughly explained in Ref. [31], Eq. (4) can be written as

∂〈H1〉
∂zi

= 0 ⇔
n∑

i=1

∞∑
m=1

mAi−1,kimAi,ki−1m sin mzi = 0 (6)

where Ai,j is the jth Fourier coefficient of the ith oscillator. From Eq. (6) we conclude that zi = 0, π always satisfy
(4) while, if special symmetry conditions hold, one could also obtain additional solutions.

If the action-angle canonical transformation is known, one could search for these solutions in (4) or its equivalent
(6). However, in the generic case where the explicit form of the action-angle variables is not known, a method to
calculate the necessary quantities has been developed in Ref. [32]. According to this method, the system of equations
(4) is equivalent to the following one:

∫ T

0

∂H1

∂xi
pidt = 0 , i = 1 . . . n . (7)

This system can easily be solved numerically, as will be later shown in a specific example.
Besides the existence of the multibreather-solutions, the phase difference between the oscillators determines also its

linear stability, as shown in Refs. [31, 33].
The linear stability of a periodic orbit (which in the specific case is the multibreather), is defined by the eigenvalues

of the corresponding Floquet matrix λi. For ε = 0, these eigenvalues lie in two complex conjugate bundles at e±iωpTb ,
except the 2n + 2 eigenvalues which correspond to the n + 1 central oscillators which lie at unity. For |ε| 6= 0 ¿ 1,
the eigenvalues of the non-central oscillators move along the unit circle being of the same Krein kind, while the ones
of the central oscillators are given by

λi = eσiT , (8)
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where σi are the corresponding characteristic exponents. As it was proven in Ref. [34] (and also stated, in the present
formalism, in Ref. [30]), these exponents are given in the leading order of approximation by

σi = ±√εσj1 + O(ε) , (9)

while σ2
j1 coincide with the eigenvalues of the stability matrix

E = −A ·B ,

with

A =
(

∂2〈H1〉
∂ϑi∂ϑj

)
, B =

(
∂2H0

∂Ji∂Jj

)
.

Therefore, if the various values of σ2
i1, i.e. the eigenvalues of E, are negative and distinct, the multibreather is linearly

stable. If there are no other solutions than the standard ones the corresponding linear stability is well defined by the
knowledge of the resonant angles zi, the kind of potential anharmonicity — i.e. hardening (∂ωi/∂Ji > 0) or softening
(∂ωi/∂Ji < 0) — and the sign of ε. Let us now apply this method in a specific example, namely the equation of
transverse dust grain motion in a dust crystal.

III. TRANSVERSE DUST GRAIN MOTION IN A DUST CRYSTAL

We shall consider the vertical (off-plane, ∼ ẑ) charged grain displacement in a dust crystal (assumed quasi-
one-dimensional, of infinite length: identical grains of charge q and mass M are situated at xn = n r0, where
n = ...,−2,−1, 0, 1, 2, ...), by taking into account the intrinsic nonlinearity of the sheath electric (and/or magnetic)
potential. The in-plane (longitudinal, acoustic, ∼ x̂ and shear, ∼ ŷ) degrees of freedom are assumed suppressed; this
situation is indeed today realized in appropriate experiments [26, 27], where a laser impulse triggers transverse dust
grain oscillations, while a confinement potential ensures the chain’s in-plane stability.

A. Equation of motion

The vertical grain displacement obeys an equation in the form [22, 23]

d2δzn

dt2
+ ν

dδzn

dt
+ ω2

0 ( δzn+1 + δzn−1 − 2 δzn) + ω2
g δzn + α (δzn)2 + β (δzn)3 = 0 , (10)

where δzn(t) = zn(t)−z0 denotes the small displacement of the n−th grain around the (levitated) equilibrium position
z0, in the transverse (z−) direction. The characteristic frequency ω0 =

[−qΦ′(r0)/(Mr0)
]1/2 results from the dust

grain (electrostatic) interaction potential Φ(r), e.g. for a Debye-Hückel potential [35, 36]: ΦD(r) = (q/r) e−r/λD ,
one has: ω2

0,D = q2/(Mr3
0) (1 + r0/λD) exp(−r0/λD) , where λD denotes the effective DP Debye radius [15]. The

damping coefficient ν accounts for dissipation due to collisions between dust grains and neutral atoms. The gap
frequency ωg and the nonlinearity coefficients α, β are defined via the overall vertical force: F (z) = Fe/m − Mg ≈
−M [ω2

gδzn + α (δzn)2 + β (δzn)3] + O[(δzn)4], which has been expanded around z0 by formally taking into account
the (anharmonicity of the) local form of the sheath electric (follow exactly the definitions in Ref. [22], not reproduced
here) and/or magnetic [37] field(s), as well as, possibly, grain charge variation due to charging processes [23]. Recall
that the electric/magnetic levitating force(s) Fe/m balance(s) gravity at z0. Notice the difference in structure from
the usual nonlinear Klein-Gordon equation used to describe one-dimensional oscillator chains — cf. e.g. Eq. (1) in
Ref. [6]: TDLWs (‘phonons’ ) in this chain are stable only in the presence of the field force Fe/m.

For convenience, the time and vertical displacement variables may be scaled over appropriate quantities, i.e. the
characteristic (single grain) oscillation period ω−1

g and the lattice constant r0, respectively, viz. t = ω−1
g τ and

δzn = r0qn; Eq. (10) is thus expressed as:

d2qn

dτ2
+ ε( qn+1 + qn−1 − 2 qn) + qn + α′ q2

n + β′ q3
n = 0 , (11)

where the (dimensionless) damping term, now expressed as (ν/ωg)dqn/dτ ≡ ν′q̇n, will be henceforth omitted in the
left-hand side. The coupling parameter is now ε = ω2

0/ω2
g , and the nonlinearity coefficients are now: α′ = αr0/ω2

g and
β′ = βr2

0/ω2
g .
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B. Linear waves

Retaining only the linear contribution and considering oscillations of the type, δzn ∼ exp[i (knr0 − ωt)] + c.c.
(complex conjuguate) in Eq. (10), one obtains the well known transverse dust lattice (TDL) wave optical-mode-like
dispersion relation

ω2 = ω2
g − 4ω2

0 sin2

(
kr0

2

)
, (12)

or

ω̃2 = 1 − 4ε sin2(k̃/2) , (13)

See that the wave frequency ω ≡ ω̃ωg decreases with increasing wavenumber k = 2π/λ ≡ k̃/r0 (or decreasing
wavelength λ), implying that transverse vibrations propagate as a backward wave: the group velocity vg = ω′(k) and
the phase velocity ωph = ω/k have opposite directions (this behaviour has been observed in recent experiments). The
modulational stability profile of these linear waves (depending on the plasma parameters) was investigated in Refs.
[22, 23]. Notice the natural gap frequency ω(k = 0) = ωg = ωmax, corresponding to an overall motion of the chain’s
center of mass, as well as the cutoff frequency ωmin = (ω2

g −4ω2
0)1/2 ≡ ωg (1−4ε2)1/2 (obtained at the end of the first

Brillouin zone k = π/r0) which is absent in the continuum limit, viz. ω2 ≈ ω2
g −ω2

0 k2 r2
0 (for k ¿ r−1

0 ); obviously, the
study of wave propagation in this (k . π/r0) region invalidates the continuum treatment employed so far in literature.
The essential feature of discrete dynamics, to be retained here, is the (narrow) bounded TDLW (‘phonon’ ) frequency
band, limited in the interval ω ∈ [(ω2

g − 4ω2
0)1/2, ωg]; note that one thus naturally obtains the stability constraint:

ω2
0/ω2

g = ε < 1/4 (so that ω ∈ R ∀k ∈ [0, π/r0]).
We needn’t go into further details concerning the linear regime, since it is covered in the literature. We shall,

instead, see what happens if the nonlinear terms are retained, in this discrete description.

C. Multibreathers in dust crystals

Eq. (11) can be generated by a Hamiltonian of the form (1) by considering a quartic polynomial potential of the
form

V (x) = x2 + a′x3 + b′x4 , (14)

and considering negative values of ε (in account of inverse dispersion).
The values of the anharmonicity parameters a′ and b′ may be deduced from dusty plasma experiments on nonlinear

vertical dust lattice oscillations [24–27]. For instance, the Kiel (Germany) experiment by Zafiu et al. [25] – using a laser
to trigger nonlinear vertical dust grain oscillations – has provided the values: α/ω2

g = +0.02;+0.016;−0.27 (mm−1)
and β/ω2

g = −0.16;−0.17;−0.03 (mm−2) (successively, by gradually increasing the diameter of the dust grains; see
Table I in Ref. [25]). In our notation, this implies: α′ ' +0.02; +0.016;−0.27, and β′ ' −0.16;−0.17;−0.03 (for a
lattice spacing of the order of r0 ' 1mm). Note that damping was very low (ν′ ' 0.02), thus a posteriori justifying
neglecting it. These (three) sets of values are shown in table I, for reference.

TABLE I: Experimental data: three sets of sheath potential anharmonicity values, obtained from Ref. [25].

I II III

a 0.02 0.016 -0.27

b -0.16 -0.17 -0.03

The anharmonicity condition is satisfied in set II and III since dω/dJ < 0 in the entire range of allowed values of
J as it can be seen in Fig. 1. The computations of ω(J) has been made numerically since the explicit transformation
is not known. For a more detailed description see in Ref. [32].

To make things specific, we choose to have two central oscillators in the anticontinuous limit moving with the same
frequency ω1 = ω2 = ω, which satisfies the nonresonance condition and will also be the frequency of the multibreather.

We now have to check condition (4). As already shown above, the zi = 0, π solutions always exist. Since the
action-angle transformation is not known, to check for extra solutions, one has to solve the equivalent equation (6)

∫ T

0

∂H1

∂x2
p2dt = 0 . (15)
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FIG. 1: ω(J) for sets II and III.
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FIG. 2: F (x20) for sets II and III.

This equation defines a relationship between x1 and x2. The periodic orbits are thus defined, meaning that the energy
Ei end the period Ti of the orbits are known. The only unknown is the set of initial conditions for the orbits x10, p10,
x20, p20. We fix x10 = 0 and choose the specific p10 > 0 which determines the desired periodic orbit. So, the only free
variable is x20, since we can choose p20 from the equation of energy. We now need to solve the equation

F (x20) =
∫ T

0

x1p2dt = 0 . (16)

This equation is two branched, i.e. yields one branch for each choice of sign for the momentum p20. In fig. 2, these
two branches are presented togother in the same diagram for sets II and III, the two roots of F (x20) correspond to the
standard breather solutions z = 0, π. As for the stability of these solutions, following the arguments in Refs. [31, 33],
the solution with z = 0 will be the linearly stable one and, since there are no other solutions besides the ones already
mentioned, this solution will be the only linearly stable one. In particular, in Ref. [31] it is shown that

σ2
11 = −k2 ∂ω

∂J

∞∑
m=1

m2A2
m cosmz , (17)

which for ε < 0 confirms what has been claimed above.
We have computed this solution for only two central oscillators, but it would be the same for any number n of

central oscillators since, as it is shown in [32], the system is consisted by independent equations. In that case, the
only linearly stable solution would be zi = 0, for i = 1, . . . , n.

The above mentioned solutions is proven to be linearly stable for small enough ε. However, as the absolute value of
ε increases, the eigenvalues corresponding to the central oscillators will collide to the phonon band and, since they are
of opposite Krein sign, they can leave the unit circle forming a complex quadruple; the multibreather thus becomes
unstable.

In order for the solutions to be physically relevant the experimentally measured value of the coupling constant ε
should be inside the stability region. So, the next problem is to determine the value of the coupling constant where
the solution bifurcates to become unstable. As can be seen in the diagrams below the point where it bifurcates is
ε ' −0.045 which confirms that this kind of motion can be supported by the specific model.
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