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1. Introduction

Within the framework of the ideal magnetohydrodynamic (MHD)
theory, Alfvén electromagnetic (EM) waves [1] are governed by the
continuity and momentum equations for the plasma mass flow, to-
cether with Faraday’s law, in which the electric field and the mass
flow velocity are related by Ohm’s law. The restoring force is pro-
vided by the magnetic pressure, while inertia is provided by the ion
mass. The Alfvén wave dispersion |2] describes finite frequency w
(< wgj, where wg; is the ion gyrofrequency), finite ion Larmor ra-
dius, finite ion polarization, and finite electron inertia effects. In dis-
persive Alfvén waves, the frozen-in field lines are broken, and linear
coupling between various modes (e.g. among Alfvén, magnetosonic,
shear Alfvén waves, and whistlers) may occur. The dynamics of the
dispersive Alfvén waves within the fluid model is governed by the
Hall-MHD equations [3], in which one uses the generalized Ohm’s
law to include the J x B force, where J is the plasma current and
B is the total magnetic field in the plasma. Of interest here is also
the existence of a new cut-off frequency for circularly polarized EM
ion-cyclotron Altvén waves and for magnetosonic waves in a dusty
plasma |1, 5].

In this report, we present the linear dispersion properties of
intermediate-frequency (wy, 4, We g < W < wee), long wavelength
(A > prijer wpe/c) electromagnetic waves in a multi-component
warm dusty magnetoplasma whose constituents are electrons, ions,
and immobile charged dust macroparticles. At this range, the mas-
sive dust may be considered to be immobile (i.e. the dust den-
sity my is constant, and the dust velocity u; vanishes), and elec-

tron inertia may be neglected. Here, wp o = (4Tnag? /ma)l/ 2

we,o = qaBo/(mac) and pr o = Vg of/We,a Tespectively de-
note the plasma frequency, cyclotron frequency and Larmor radius
(where vy, o = (kBTa/ ma)'/? is the thermal velocity, and T}, is
the temperature) associated with species o = e, i, d).

)

2. The model

A three-component, fully ionized dusty plasma is considered, com-
posed of electrons, ions, and immobile charged dust particulates,
with masses me, m; and my, and charges go = —e, q¢; = +4;e and
qq = —Z e, where e is the magnitude of the electron charge, Z; is
the ion charge state, and Z; is the number of electrons residing on a
dust grain. Both the mass and charged of the heavy dust particles
are assumed to be constant. The plasma is immersed in a homoge-
neous magnetic field Bg = Bz along the z axis (B =constant).
We adopt the MHD system of equations for the electrons and ions.
The electron and ion number densities n, ; and velocities u, ; are
coverned by the continuity and momentum equations
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The pressure(s) P, ; is (are) assumed to obey P, /; ~ nZ%Z

, Where
7 is the adiabatic index (i.e. v = 3 for adiabatic compression, v =
5/3 in three dimensions, and v = 1 for isothermal compression),

thus VP, /i = Ve /,L-T . /Z-Vne /i Also, E is the wave electric field
and B is the sum of the static and wave magnetic fields, viz. B =
Bo+b. The system is closed with the Maxwell equations. Ampere’s

and Faraday’s laws read
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The displacement current was neglected in the Eq. (5), since low
phase speed (w/k < ¢) EM waves are considered here. At equilib-
rium, the overall neutrality condition is

Zinio + Zgng = 0,

(7)
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the subscript 0 denotes the unperturbed densities.

3. Reduced system of equations

Letting n; & n; g+ n1 and u; = 0+ v, where n; < n; o is a small
perturbation in the density, a reduced system of evolution equations

can be obtained from Eqgs. (1) to (6) (see in [0] for details). These
are the ion continuity equation

ony /Ot +n;ogV-v=0, (8)
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the ion momentum equation

2
g—z = —Qp(vxz) + 47Tii)omi (V xb)xz-— an, (9)
and the magnetic field evolution equation
Ob X ac By .
i =aByV X (vxz)— 47TZ7;67%'7()V X [(V X b) x z] , (10)

where we have used the quasi-neutrality condition

— here Z; > 0(Z; < 0) for negative (positive) dust charge — and
defined the quantities Qp = Zngwe;/neo and o = Zin; o/ne o,
where w.; = Z;eBy/m;c is the ion gyrofrequency. The modified ion
sound speed is ¢g = K%nz ol; + %Zzn oLe/ne 0) /min; O} /7
The latter equations form a closed system which describes the evo-
lution of small ion density, ion velocity and magnetic field pertur-
bations in our dust Hall-MHD plasma model. In a dust-free (e-i)
plasma, where o = 1, the ion rotation frequency {2p vanishes and
Eq. (9) describes ion acceleration by the J x By and V(P14 Pj1)
forces, while Eq. (10) then simply depicts the evolution of the
wave magnetic field in the presence of a non-solenoidal electric field
E = —v. x By. In a dusty Hall-MHD plasma with negatively
charged dust grains, where o > 1, an enhanced charge separation
appears due to the wave electric field. The resulting enhanced elec-
tron fluid velocity produces a new Lorentz centripetal force [the
first term in the right-hand side of Eq. (9)], which in combination
with the J X B and pressure gradient forces produces ion rotation
around the negatively charged static dust grains. The rotational
force acting on the ions is then responsible for a non-trivial coupling
between various wave modes in dusty plasmas. Furthermore, due
to a > 1, we obtain an increased Alfvén wave phase speed and ion
skin depth.

Let us now consider small amplitude propagating electromagnetic
waves around the equilibrium state {n; o, 0, Bg} (where the pertur-
bations are {ni,v,b}). Following Ref. [9], we thus linearize our
ocoverning equations to derive a fairly general dispersion relation
for the wave propagation in our uniform dusty magnetoplasma. By
letting /0t — —iw and V — ik, where w and k = k| + zk, de-
note the wave frequency and the wavevector, respectively, we then
obtain from Eqs. (8) - (10)

wnp —n;ok-v=0,

(11)

Qplvx ) — —2P0 (b bk + (k- )kCQ (12)
WV = —1 V Z) — — A%
i dmmin; g : : W
and
. . acB
wbh = —a By kv — (k- v)2] + 47T6n2-7(()) 7k (k x b).

Using the constraint V- B =0, 1. e. k- b = 0, the inner product

of k with Eq. (12) gives
w CVBO 2 : A
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which, combined with Eqs. (12) and (13), yields
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where we defined j, = (k x b) - 2, as well as the (dust-modified)
Alfvén speed V4 = aBy/\/4dmmin;y = avy, where a =
Zini o/ Ne,0.
From Egs. (12) and (13), one also obtains
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Equations (14) - (16) form a closed system in terms of b,, j, and
(k x v) - z. The latter two equations may now be solved, and the
solutions may then be inserted into Eq. (14).

Combining Eqs. (14)-(16) we obtain

2 (,,2 2.2 —1
ilw? Splw” — kzey) 1212
- WK A
QQ ( 2 k262) 1 O (w2 o ]@2 2)
R PA R 2
[~ Hormoa o T e Vit am
and
Q2 (w2 o k202> —1
A 2 R 27,2
kxv)-z=1|w — (2 kQCZ%)S EZVi
Qp(w” - kzcg) 2V K Vy " (18)
(w? — k2c2) awe; | /Frmin; “

plasmas
TENFLO 2

Substituting into Eq. (14), we obtain the new dispersion relation

(w2 — kng) wQ(wQ — k%i) — (w2 — kgcg)kQVi
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where k% = k2 + kg + k2= ki + k2. We have defined the (dust-
modified) Alfvén speed V4 = o By/\/4mmin; o = avy. Note the
effect of the dust expressed via {2 and a. The terms in the second
line are due to the Hall-term, and thus disappear in the 1deal MHD
limit (the first term in the right-hand side would then be the sole
modification due to the stationary dust). The same terms also
disappear in the purely perpendicular propagation limit.

4. Dust-free two-component plasmas.

Let us now check the above results in the vanishing dust limit.
With 0p =0, a =1 and V4 = v 4, we obtain

(w2—k§v?4) W —kQ(vA+c)w + B2k’ VAl =

21.21.2
W2 k2 k20t
4 (20)
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This dispersion relation was derived in Ref. [7] and analyzed
in Refs. [3, &|; it incorporates the electromagnetic ion-cyclotron
Alfvén modes, the fast and slow magnetosonic modes, the Kki-
netic Alfvén waves, and long wavelength whistlers. For instance,
in the limit ¢¢ = 0 and k| 0, one obtains the magnetic
field aligned dispersive electromagnetic ion-cyclotron-Alfvén wave,
ie. = kyvy (1 :I:cu/cucz-)l/2 (here 4/— corresponds to right-
/left-hand circularly polarized waves). The whistler frequency
W = kzkc2wce/w26 is recovered for w > kv, and c¢g = 0. The

kinetic Alfvén waves, w ~ kv 4 (1 + k 2/ wgz) /2 are obtained in
the limits cs K vy, krcs K w <K Wy, kLvA, k| cs. For perpen-

dicular wave propagation (k% = k> + k2 = “ ), one recovers the
| /2

(wQ k2 2)

(fast) magnetosonic mode, w = k| (v2 Gt 2)

5. Dusty (three-component) plasmas.

5.1. Perpendicular propagation. For perpendicular wave
propagation, viz. k; =0and k =k | = (k% + k;)l/ 2 one recovers
from Eq. (19) the modified magnetOSOnz’c mode

—H/A)
= Qg O]

Note the Rao frequency cutoff wlk, =0)

5.2. Parallel propagation. For wave propagation along the
magnetic field direction (i.e. for k = k,, one obtains from Eq. (19)

(w? — k2V3)” = w05 + k4vf4( 0%) + 2KV R (1)
W — = W W —
zVA R o wg@ AOMCZ
which can be exactly rewritten in the simpler form
2
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and which precisely agrees with the well known result || for the
magnetic field aligned circularly polarized electromagnetic waves.

5.3. Cold dusty plasma. In a cold dusty plasma (cg = 0),

the dispersion relation (19) reduces to

(w? — kng)(wz — W?él) = wzwib + Q7 (w2 -~ w%b) + QOzQRwCiwib,
where w4 = kVy and b = kQVA/OéQ 2 In the limits w?qb <
02, w20 R/20w, w? and k. Viwg < w?, one obtains

w? = Q% + (k* + k2)
whereas for wj%lb < Q% W Qp/200w,.4, w? and w? < k,Vw g,
W = koK V0.
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