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1. Introduction

One of the most astonishing novel characteristics of dusty (com-
plex) plasmas is the occurrence of strongly coupled dust configura-
tions, such as the spontaneous formation of crystalline-like periodic
arrangements, in the sheath region (above the negative electrode) in
gas discharge experiments. Crystal formation and dynamics have
been studied in numerous experiments, in which ‘dust’ particles
were essentially created by injecting artificial (e.g. formaldehyde)
micro-spheres, which subsequently acquire a fixed (negative, usu-
ally) charge via inherent dynamic charging mechanisms.
More recent experimental studies have been devoted to studies of
alternating charge sign (positive-negative) dust configurations [1].

2. Formulation – a model dust bi-crystal

We shall consider a one dimensional horizontal chain (assumed in-
finite, for simplicity) consisting of negative and positive dust grains,
located at equidistant sites (lattice constant r0). Odd (even) sites,
i.e. at x = (2n + 1)r0 (x = 2nr0; n ∈ N ), are occupied by nega-
tive (positive) charge dust grains, of charge −Q1 (+Q2) and mass
M1 (M2, respectively); we assume that M1 > M2, with no loss
of generality. Vertical force equilibrium is ensured by (a balance
between) gravity and electric/magnetic forces; only longitudinal
displacement δxn = xn − nr0 (where n ∈ N ) is permitted in this
simplified model.
The electrostatic binary interaction force F (r) exerted on two
grains situated at a distance r is derived from a potential func-
tion U(r), viz. F (r) = −∂U(r)/∂x. Considering the (attractive)
interaction between first neighbors only, i.e. rn,n+1 = xn+1−xn =
r0+δxn+1−δxn, we may Taylor expand U(r) around r0, to account
for grain displacements. We formally have:

F (r) ≈ −U ′′(r0)(r− r0)−
1

2
U ′′′(r0)(r− r0)

2− 1

6
U ′′′′(r0)(r− r0)
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(the prime denotes differentiation). In the following, we shall set:

U ′′(r0) = G , U ′′′(r0)/2 = GA , U ′′′′(r0)/6 = GB .

The description of our dust crystal dynamics is thus effectively
reduced to a problem of longitudinal atom motion in a diatomic
chain, characterized by an anharmonic coupling ‘spring’ potential.
Our dust bi-layer may therefore be analyzed by making use of stan-
dard analytical tools from solid state physics [2, 3].
If one considers a Debye-type interaction potential (energy)

UD(r) = Q1Q2 e−r/λD/r ≡ (Q1Q2/λD) e−κ/κ ,

for which:

U ′D(r0) = −(Q2/λ2
D) e−κ (1 + κ)/κ2 ,

U ′′D(r0) = +(2Q2/λ3
D) e−κ (1 + κ + κ2/2)/κ3 ,

U ′′′D (r0) = −(6Q2/λ4
D) e−κ (1 + κ + κ2/2 + κ3/6)/κ4 ,

and

U ′′′′D (r0) = +(24Q2/λ5
D) e−κ (1 + κ + κ2/2 + κ3/6 + κ4/24)/κ5 ,

where the lattice parameter is κ = r0/λD.

3. Equations of motion

Denoting the odd (even) grain displacement, within the n−th pair,
by δz2n+1 = zn (δz2n = wn), the resulting equations of motion
read:

M1
d2zn

dt2
= G(wn − 2zn + wn−1)

+GA
[
(wn − zn)2 − (zn − wn−1)

2]
+GB

[
(wn − zn)3 − (zn − wn−1)

3]
M2

d2wn

dt2
= G(zn+1 − 2wn + zn)

+GA
[
(zn+1 − wn)2 − (wn − zn)2

]
+GB

[
(zn+1 − wn)3 − (wn − zn)3

]
. (1)

4. Linear vibrations

Assuming a plane wave (phonon) solution in the form: z =
Z exp i[(2n + 1)kr0−ωt]+c.c. (for the heavy negative grains) and
w = W exp i(2nkr0−ωt)+c.c (for the lighter positive grains), one
finds that the frequency ω is related to the wavenumber k via the
dispersion relation(

ω2

2G
− 1

M1

) (
ω2

2G
− 1

M2

)
=

1

M1M2
cos2 kr0 ;

the exact solution for the frequency reads

ω2
± =

G

µ

(
1±

√
1− 4µ2

M1M2
sin2 kr0

)
, (2)

where we have defined the reduced mass µ = M1M2/(M1 + M2).

Fig. The dust bi-layer dispersion relation ω± (normalized by G/µ) is depicted

vs. the reduced wavenumber kr0, for M1 = 2M2 = 1 and G = 1 (indicative

arbitrary values).

This relation defines a two-fold dispersion curve.

The lower branch ω− defines an acoustic mode; at low k, it sat-
isfies: ω− ≈ ( 2G

M1+M2
)1/2kr0 ≡ c0k, and thus both the group

velocity vgr,− = ω′−(k) and the phase velocity vph,− = ω−/k tend
to the (constant) ‘sound velocity’ c0 for low k.

The upper branch ω+ defines an optic mode ; at low k, it satisfies:
ω− ≈ ( 2G

M1+M2
)1/2 =constant, and thus vgr,+ = ω′+(k) = 0 and

vph,+ →∞ for long wavelengths λ = 2π/k.

The frequency band scanned by the two modes are ω− ∈
[0,

√
2G/M1] and ω+ ∈ [

√
2G/M2,

√
2G/µ].

We note the appearance of a forbidden frequency range between
ω−(k = ±π/2r0) = ω−,max =

√
2G/M1 and ω+(k = ±π/2r0) =

ω+,min =
√

2G/M2.

Furthermore, we point out that the optic mode ω+ is characterized
by an inverse dispersion, thus vgr,+ = ω′+(k) ≤ 0 everywhere in
the first Brillouin zone (1BZ) [0, π/2r0].

The amplitude eigenmodes – i.e. the solutions of the linearized
system of Eqs. (1), for Z and W – satisfy: W/Z = (2G −
M2ω

2
±)/(2G cos kr0). Therefore, in-phase (out-of-phase) motion

is prescribed for long wavelength acoustic (optic) vibrations, since
W/Z → 1 (W/Z → −M1/M2, respectively) for k → 0.

5. Continuum approximation

Assuming a long excitation extension L � r0, one may substitute
the discrete space variables zn(t) and wn(t) with continuous ones,
say z(x, t) and w(x, t), by Taylor expanding, i.e.

zn±1 ≈ z ± 2r0zx + 2r2
0zxx±

4

3
r3
0zxxx +

2

3
r4
0zxxxx +O[(2r0/L)5]

(and the analogous expression for wn → w), where the subscript
denotes differentiation, e.g. zx = ∂z/∂x and so forth. Insert-
ing into the discrete equations of motion (1), one thus obtains two
coupled partial derivative equations (PDEs). For analytical manip-
ulation purposes, the second one may be neglected by employing
the ‘Büttner ansatz’ [3]:

w ≈ σ[z+b1r0zx+
b2

2
r2
0zxx+

b3

6
r3
0zxxx+

b4

24
r4
0zxxxx+b0f (z)]+O(ε5) ,

where σ is set equal to 1 (−M1/M2) for the acoustic (optic) mode,
and the parameters bj and the function f (z) are appropriately
adjusted for compatibility. One thus remains with one PDE, in
terms of z(x, t), while w(x, t) is defined accordingly.
In the following, we shall present some recent results regarding the
acoustic mode. The remaining results will be exposed in a detailed
article, in preparation.

6. Nonlinear analysis: the Boussinesq equation for the
accoustic mode

The compatibility among the eqs. of motion is ensured by choosing
[3]: σ = b1 = 1, b2 = 2µ/M2, b3 = 6µ(2M1 −M2)/(3M1M2),
b4 = 24µ[1/(3M2)− b2

2/(4M1)], and b0 = 0 (for first-neighbor only
interactions); see that an ordinary Taylor expansion (viz. bj = 1)
is recovered in the limit M1 = M2.
The system of Eqs. (1) now yield to the nonlinear PDE

ztt − c2
0zxx = p0zxzxx + q0z

2
xzxx + h0zxxxx , (3)

or (in an equivalent manner) the Generalized Boussinesq equa-
tion

utt − c2
0uxx = p(u2)xx + q(u3)xx + h0uxxxx , (4)

where we have set:

u = zx, p = p0/2 = GAb2/M1, q = q0/3 = GBb2/M1,

and

h0 =
2G

M1
r4
0(

b4

24
− b3

6
+

b2

2
− 1

3
)

(the sound velocity c0 was defined above).

The ordinary (modified, respectively) Boussinesq equation is re-
covered from Eq. (4), upon setting q = 0 (p = 0), or B = 0
(A = 0), i.e. by neglecting quartic (cubic) interaction potential
contributions.

The GBq Eq. (4) yields two distinct pulse soliton solutions (whose
exact form is omitted here, for brevity); these lead (since u = zx)
to the kink (shock-like) soliton:

z(x, t) = ±2
(6h0

q0

)1/2
arctan

[ 1

P1
tanh

(x− vt

L1
+ x0

)]
, (5)

where

P1 =
{
[
√

p2
0 + 6(v2 − c2

0)q0±p0]/[
√

p2
0 + 6(v2 − c2

0)q0∓p0]
}1/2

;

x0 and v are real constants, which determine the soliton center and
(supersonic, since v > c0) velocity, respectively;

the soliton width is expressed by L1 = 2
√

h0/(v2 − c2
0).

Recall that L1 � r0 in order for the continuum theory to be valid.
The two solutions above correspond to a rarefactive and a compres-
sive localized excitation, propagating in the dust bi-layer.

7. KdV acoustic soliton theory.

By assuming near-sonic propagation, i.e. v ≈ c0, and a very slow
time variation (viz. uττ � uτ , uξ), one obtains from the GBq
Eq. (4) the canonical form of the Generalized Korteweg - de
Vries (GKdV) equation

uτ + 6uuξ + 6u2uξ + uξξξ = 0 (6)

[3], where we have defined: ξ = p0(x − c0t)/
√

6h0q0, τ =

p3
0 t/[2c0(6q0)

3/2h
1/2
0 ], and u = zξ

√
q0/(6h0). The GKdV Eq.

(6) yields two distinct exact soliton solutions, which may be in-
verted to u; one thus obtains two different kink solitons in the
form:

z(x, t) = ±2
(6h0

q0

)1/2
arctan

[ 1

P2
tanh

(x− vt

L2
+ x2

)]
, (7)

where

P2 =
{
[
√

p2
0 + 12c0(v − c0)q0±p0]/[

√
p2
0 + 12c0(v − c0)q0∓p0]

}1/2
;

x2 and v are real constants, which determine the soliton center and
(slightly supersonic) velocity, respectively;
the soliton width is expressed by L2 = 2

√
h0/[2c0(v − c0).

Again, L2 � r0 is assumed, in order for the continuum theory to
be valid.
These two solutions correspond to a rarefactive and compressive
localized excitation. Notice that Eq. (7) are recovered from Eq.
(5), by setting v + c0 ≈ 2c0.

Fig. KdV vs. Boussinesq theory (displacement) solitons, for different Mach

numbers M = v/cL.

We conclude that the KdV (and associated) equation related theory
adds no extra information to that obtained via the (less approxi-
mate) Boussinesq theory.

8. Amplitude modulational analysis of dust bi-lattice
waves

A study of the amplitude modulation of the dust bi-layer described
above is being carried out and results will be reported soon.
The standard multiple scale analysis provides a set of nonlinear
Schrödinger equations, whose compatibility is ensured via an appro-
priate choice of the Büttner ansatz parameters (see above). Finding
the exact expressions for these parameters is a tedious task, whose
results are too lengthy to report here.
Let us point out that the (electrostatic) coupling ‘potential pos-
sesses a strong cubic term, which leads to an asymmetry in the
envelope excitations (cf. our neighboring poster for a 1d dust crys-
tal).

Similar results have been obtained for one-dimensional dust mono-
layers [4]. These theoretical considerations will hopefully be con-
firmed by appropriate experiments.
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