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1. Introduction

Left-handed (or negative refraction index ) materials (LHM) are
artificial meta-materials, which are characterized by a negative
value of both the dielectric permittivity ε and magnetic per-
meability µ , as well as a negative value of the refraction index
n = −√εµ.
Inspired by the seminal work of Veselago in 1968 [1], a number
of pioneering theoretical studies [2] suggested how these peculiar
properties could be realized in purpose-designed and built materi-
als, and experiments subsequently confirmed those predictions [3].
A number of applications (e.g. in optics [4]) were suggested to ex-
ploit the singular physical properties of LHM (beam re-focusing,
inversion of Snell’s law and of the Doppler shift effect, backward
Cerenkov radiation, etc).
The theory of electromagnetic (EM) wave propagation in linear
LHM was recently extended to account for nonlinear (i.e. field
amplitude dependent) material properties [5, 6]. Ab initio calcula-
tions of the nonlinear dielectric and magnetic properties of split-ring
resonator (SRR) lattice structures showed that magnetic nonlinear-
ity, in principle, dominates in LH composite materials [5]. Taking
this fact into account, the dynamics of the electric and magnetic
field envelope of an EM wave propagating in a LH medium was re-
cently related to the nonlinear amplitude modulation formalism by
Lazarides and Tsironis [7], who showed that modulated EM wave
propagation is governed by a pair of coupled Nonlinear Schrödinger-
type equations (CNLS).
In this study, we present an investigation of the nonlinear stability
of EM waves in a negative refractive index composite medium.

2. Nonlinear description of EM wave propagation in
LHM

The dielectric and magnetic behaviors of negative index materials/
LHM are characterized by both frequency dispersion and nonlin-
earity [5, 6]. Let us briefly review the existing theories modeling
these mechanisms, in order to set the theoretical background of the
stability analysis that will follow [7].

2.1. Nonlinear LHM properties

The dielectric and magnetic response of a nonlinear material is for-
mally characterized by an electric flux density D and a magnetic
induction B, which depend on the electric and magnetic field in-
tensities E and H as:

D = εeffE = εE + P′

and
B = µeffH = µH + M′ ,

where ε and µ denote the medium (linear) dielectric permittivity
and magnetic permeability, respectively, while P′ = εNLE and
M′ = µNLH express the nonlinear contributions to the medium
polarization and magnetizationa.
The dielectric response of LHM (SRR lattices, here) is given by
the nonlinear and dispersive expression [5] (neglecting losses)

εeff = ε0

(
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)
+ εNL(|E|2)
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where the effective cutoff (“plasma”) frequency ωp is related to the
geometrical features of the SRR lattice [2, 5]; ω is the propagating
mode frequency; εD is related to the (nonlinear) dielectric response.
The possibility for negative permittivity arises from the frequency
dependence, for ω < ωp.
The magnetic response of (SRR lattice-based) LHM reads [2, 5, 6]
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≡ µ + µNL(|H|2) , (2)

where the (linear) resonant SRR frequency ω0 and the factor F
(= the single ring to unit cell area ratio; 0 < F � 1, ideally) are
related to the intrinsic lattice structure [2] (losses neglected).
The (linear) permeability µ attains negative values for ω0 < ω <
ω0/
√

1− F , while the (complete) effective permeability µeff yields
an enriched behavior. Note that µ→ µ0, for ω → 0.
The nonlinear frequency ω0,NL ≡ Xω0 is related to ω ≡ Ωω0 and
ω0, via a complex expression [5].
For small |E|, one may assume a Kerr-type behavior [5, 6]

εeff ≈ ε + α|E|2 .

α positive/negative denotes a focusing/defocusing behavior.
aOur notation incorporates the vacuum dielectric permittivity ε0 and magnetic permeability µ0 = 1/c2ε0

into εeff and µeff (contrary to a widely used notation, according to which B = µeffµ0H and D = εeffµ0E).

One then has [5, 6, 7]

|H|2 = α A2 E4
c

(1−X2) (X2 − Ω2)2

Ω2 X6
, (3)

where Ec determines the characteristic dielectric nonlinearity scale
(viz. α = ±E−2

c ) and the quantity A is related to the physical
features of the material unit elements [5, 6]. Note that relation (3)
suggests a multi-valued dependence of X and µeff , on |H|2.
To simplify the description, one may consider a “Kerr-like” mag-
netic dependence

µeff ≈ µ + β|H|2

where β is related to intrinsic material properties [7].
Although, given the complexity of (3), it is not trivial to obtain an
analytical expression for the phenomenological nonlinearity para-
meter β, this assumption seems to be justified for sufficiently low
values of the magnetic field intensity H ; also cf. [5].
We recall that the dispersive character of the medium is hidden
in the frequency dependence of both ε and µ, and that, in fact,
left-handed behavior is restricted within a certain range of fre-
quency values. Thus, this formulation formally applies to both
right-handed and left-handed behaving frequency ranges of com-
posite materials. Nevertheless, rigorously speaking, this description
refers to low magnetic fields, as explained above.
We note that the above relations are compatible with the causality
requirements d[ε(ω) ω]/dω > 1 and d[µ(ω) ω]/dω > 1 [2].

2.2. EM wave modulation

Let us consider an EM plane wave propagating in a left-handed
medium. The wave consists of an electric and a magnetic field(s)
of intensities E and H, respectively, representing transverse prop-
agating oscillations in perpendicular directions.
E ×H determines the (Poynting) direction of energy flow, which
coincides (is opposed to) the propagation direction, say along z, in
right-handed (RH) [left-handed (LH), respectively] media [2].
The field vector magnitudes are E(z, t) = E(z, t) exp[i(kz − ωt)]
and H(z, t) = H(z, t) exp[i(kz − ωt)], where ω, k = 2π/λ and
λ here denote the cyclic frequency, the wavenumber and the wave-
length, respectively.
EM wave propagation is governed by Maxwell’s laws. The nonlinear
modulation of the EM field amplitudes was shown to be governed
[7] by the coupled Nonlinear Schrödinger (CNLS) equations :

i
∂E
∂T

+ P
∂2E
∂X2

+ Q11 |E|2 E + Q12 |H|2 E = 0 (4)

i
∂H
∂T

+ P
∂2H
∂X2

+ Q22 |H|2H + Q21 |E|2H = 0 . (5)

The (slow) position and time variables are defined as X = δ(x−vgt)

and T = δ2t, where δ � 1 is a small real parameter.
The field envelopes E and H move at the group velocity, related to
the wavevector k as vg = c2k/ω [i.e. vg = ω′(k) = c2k/ω].
The (common) group velocity dispersion coefficient is

P = ω′′(k)/2 = (c2 − ω′2)/2ω > 0 ;

(vg < c is prescribed by causality in both RHM and LHM [2c]).
The frequency ω is related to the wavenumber k via a dispersion
relation (related to the perplex expression for εeff (ω) [2c]), which
to lowest order reads ω = k/

√
εµ ≡ ck.

The nonlinearity coefficients are related to the nonlinearity (“Kerr”)
parameters α and β (both assumed ∼ δ2 here):

Q11 = Q21 = ωc2αµ/2 ≡ Q1

and
Q22 = Q12 = ωc2βε/2 ≡ Q2 .

Note the peculiar symmetry of the nonlinear part of Eqs. (4) and
(5) (contrary to the ‘usual’ case in nonlinear optics, where one
would have Q11 = Q22 and Q12 = Q21, instead).

3. Coupled plane wave solutions

Setting E(X, T ) = ρ1 exp (iθ1) and H(X, T ) = ρ2 exp (iθ2), where
ρ1,2 and θ1,2 are real functions of {X, T}, and substituting in Eqs.
(4) and (5), one obtains

ρi,T + P (2 ρi,X θi,X + ρi θi,XX) = 0 , (6)

and
θi,T = P [ρi,XX/ρi − (θi,X)2] + Q1ρ

2
1 + Q2ρ

2
2 , (7)

(i = 1, 2); the subscripts denote partial differentiation, viz. fX ≡
∂f/∂X and so forth. Taking ρ1,2 = constant, we obtain a set of
coupled monochromatic envelope (Stokes) wave solutions in the
form{
E(X, T ), H(X, T )

}
=

{
E0, H0

}
ei(Q1|E0|2+Q2|H0|2) T . (8)

These solutions represent two co-propagating modulated field en-
velopes, oscillating (slowly) at a frequency Ω = (Q1|E0|2+Q2|H0|2)
(which depends on the constant field amplitudes E0 and H0). Note
the common phase ΩT , due to the symmetry of the CNLSEs.

4. Modulational stability analysis and criterion

In order to study the stability of solution (8), we set E0 → E0 +
ξE1(X, T ) and H0 → H0 + ξH1(X, T ), where the small (ξ � 1)
perturbations E1 and H1 are complex functions of {X,T}.
Isolating terms in ξ, we obtain

iE1,T + P E1,XX + Q1(E1 + E∗1 )E2
0 + Q2(H1 +H∗1)E0H0 = 0 ,

along with the analogous equation, upon E1←→ H1, Q1←→ Q2.
Separating real and imaginary parts, and assuming a perturbation
wavenumber k̃ and frequency ω̃, we obtain

[−ω̃2 + P k̃2(P k̃2 − 2Q1E2
0 )] ã1 − 2PQ2E0H0k̃

2 ã2 = 0 ,

−2PQ1E0H0k̃
2 ã1 + [−ω̃2 + P k̃2(P k̃2 − 2Q2H2

0)] ã2 = 0 . (9)

This system is tantamount to the eigenvalue problem

(M− ω̃2I) ã = 0

where the elements of the vector ã = (a1, a2)
T are the perturbation

amplitudes, I is the unit matrix (Iij = δij, for i, j = 1, 2) and the
elements of the matrix M are:

M11 = P k̃2(P k̃2 − 2Q1E2
0 ) , M22 = P k̃2(P k̃2 − 2Q2H2

0) ,

M12 = −2PQ2E0H0k̃
2 , M21 = −2PQ1E0H0k̃

2 .

The eigenvalue existence condition Det(M − ω̃2I) = 0, provides
the bi-quadratic polynomial equation

ω̃4 − T ω̃2 + D = 0 , (10)

where
T ≡ TrM = M11 + M22 = 2P 2k̃2 (k̃2 −K)

and D ≡ DetM = M11M22 −M12M21 = P 4k̃6 (k̃2 − 2K)

denote the trace and the determinant, respectively, of matrix M.
We have defined the quantity K =

(
Q1|E0|2 + Q2|H0|2

)
/P .

Since T 2 − 4D = 4P 4k̃4K2 ≥ 0, two real solutions exist:

ω̃2
± =

1

2
(T ±

√
T 2 − 4D) , (11)

or, explicitly

ω̃2
+ = P 2k̃4 , ω̃2

− = P 2k̃2 (k̃2 − 2K) . (12)

Imposing the reality of ω− (for modulational stability) amounts to

k̃2 − 2

P

(
Q1|E0|2 + Q2|H0|2

)
> 0 , (13)

or

k̃2 − ω

P

(
α

ε
|E0|2 +

β

µ
|H0|2

)
≡ k̃2 − ω

P
K ′ > 0 . (14)

The EM stability profile thus depends on K ′ (rem.: P > 0 here).
In “ordinary” RH materials, one has µ, ε > 0, so (for β = 0, say, i.e.
for a linear magnetic response) a modulational instability may or
may not occur, depending on the focusing or de-focusing dielectric
property of the medium (i.e. on the sign of α).
In LHM, both µ and ε are negative, while α and β depend on the
medium’s structure. Clearly, the EM wave will be stable if

K ′ =
α

ε
|E0|2 +

β

µ
|H0|2 ≤ 0 (15)

If, on the other hand, K ′ > 0, the EM wave will be unstable to
external perturbations with k̃ < k̃cr ≡

√
2K =

√
ωK ′/P .

The growth rate σ = i
√
−ω̃2
− of the instability then attains its

maximum value σmax = PK = ωK ′/2 at k̃ =
√

K = k̃cr/
√

2.

Figure 1. (a) The square of the perturbation frequency ω̃ (scaled by 2KP = ωK ′) is depicted vs. the

perturbation wavenumber k̃ (scaled by
√

2K), as derived from the relation (12) for K > 0 (unstable case).

(b) The square of the instability growth rate σ (scaled by 2KP = ωK ′) is depicted vs. the perturbation

wavenumber k̃ (scaled by
√

2K).

The final (physically transparent) stability criterion reads:

K ′ ≈ εeff/ε + µeff/µ− 2 ≤ 0 . (16)

The well known focusing/defocusing nonlinearity criterion, related
to the Kerr property of optical media, is thus generalized to account
for the intrinsically nonlinear properties of LHM.
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