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I. INTRODUCTION

Periodic lattices of interacting particles are known from solid state physics to sustain, apart from propagating
vibrations (phonons), a variety of localized excitations, due to a mutual balance between the intrinsic nonlinearity
of the medium and mode dispersion. Such structures, “traditionally” sought for and investigated in a continuum
approximation (i.e. assuming that the typical spatial variation scale far exceeds the typical lattice scale, e.g. the
lattice constant rg), include non-topological solitons (pulses), kinks (i.e. shocks or dislocations) and localized mod-
ulated envelope structures (envelope solitons). Various generic nonlinear theories have been developed in order to
investigate their occurrence in different physical contexts [1, 2]. In addition to these (continuum) theories, which
neglect discreteness for the sake of analytical tractability, attention has been paid since more than a decade ago to
highly localized vibrating structures [discrete breathers (DBs) or intrinsic localized modes (ILMs)], which owe their
very existence to the lattice discreteness itself. Following some pioneering ILM related works in the late 80’s e.g.
[3-7], the breakthrough in the theoretical study of DBs took place with the first breather existence proofs, by R.S.
MacKay and S. Aubry [8] (who used the notion of continuation ffrom a suitable anticontinuous limit) and S. Flach [9]
(using a homoclinic orbit approach). A large number of studies has then followed, elucidating many aspects involved
in the spontaneous formation, mobility and interaction of DBs, both theoretically and experimentally; see in Refs.
[10-14] for a review.

Recent studies of collective processes in a dust-contaminated plasma (DP) [15] have revealed a variety of new linear
and nonlinear collective effects, which are observed in laboratory and space dusty plasmas. An issue of particular
importance in DP research is the formation of strongly coupled DP crystals by highly charged dust grains, typically
in the sheath region above a horizontal negatively biased electrode in experiments [15, 16]. Typical low-frequency
oscillations are known to occur [16] in these mesoscopic dust grain quasi-lattices in the longitudinal (in-plane, acoustic
mode), horizontal transverse (in-plane) and vertical transverse (off-plane, inverse dispersive optic-like mode) directions.

Even though nonlinearity is an intrinsic feature of dust crystal dynamics, due to inter-grain (Debye-type, screened
electrostatic) nonlinear interactions, to mode coupling [17] or to the sheath environment, which is intrinsically non-
linear. Despite this fact, present day knowledge of nonlinear mechanisms related to dust lattice modes is admittedly
still in a preliminary stage. Small amplitude localized longitudinal excitations (described by a Boussinesq equation
for the longitudinal grain displacement u, or a Korteweg-deVries equation for the density du/dz) were considered
in Refs. [18] and generalized in Ref. [19]. Also, the amplitude modulation of longitudinal [20, 21] and transverse
(vertical, off-plane) [22, 23] dust lattice waves (LDLW, TDLW, respectively) was recently considered. All of these
studies have relied on a quasi-continuum description of the dust lattice dynamics.

The discrete character of dust-lattice oscillations has, to our best knowledge, not yet been studied, let alone a recent
first investigation which was restricted to single-mode transverse dust-breathers [29]. This study has examined the
properties of vertical (transverse) dust lattice vibrations. Most interestingly, the transverse (linear) dust lattice mode
is known to obey an inverse dispersion law: therefore the group velocity vy = w’(k) and the phase velocity vy, = w/k
point towards opposite directions. The anharmonic character of the vertical on-site potential (confirmed experimen-
tally [24, 26]), in combination with the high discreteness of dust crystals, clearly suggested by experiments [27, 28],
may play an important role in mechanisms like energy localization, information storage and response to external
excitations. Furthermore, we point out that the on-site potential which dominates vertical dust grain vibrations in
a lattice, are characterized by a strong cubic term , which has . Rather surprisingly, these aspects have hardly been
investigated yet.

In this study, we are interested in investigating the conditions for the occurrence of discrete multi-site lattice
excitations (multibreathers) in a nonlinear (infinite sized) Klein-Gordon-like chain, which is characterized by an
inverse dispersion law. Nonlinearity is assumed to be supplied by a (non harmonic) on-site potential, while inter-
particle interactions are take to be linear. A negative coupling coefficient (“spring constant”) value is assumed, in
account of an inverse dispersion. Our results will eventually be applied in a description of real transverse dust-lattice
excitations, as observed in plasma discharge experiments.

II. EXISTENCE OF MULTIBREATHERS

We shall prove the existence of multibreather excitations in the system described above. The method we adopt is
based on the continuation of a specific state of a suitable anticontinuous limit, as e.g. in [8, 30]. The formalism used
is described in Ref. [31]. A brief outline of the method is provided in the following.

Consider the Hamiltonian
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with V’(0) = 0 and V" (0) = w2 > 0, which leads to the equations of motion
T; = 7‘/14,(I7;)+6(I¢+1 72xi+$1‘_1) VieZ. (2)

This is the classical Klein-Gordon chain, which is well known to support multibreather solutions.

As a matter of fact, the multibreather existence theorems, based on a continuation from a suitable anticontinuous
limit [31, 32] hold for an e-neighborhood around zero, and are thus valid either for € > 0 or for € < 0, provided that
€| is sufficiently smaller than 1.

Consider the integrable anticontinuous limit (¢ = 0) i.e. the chain is consisted by uncoupled oscillators. In this
limit we consider the state where all the oscillators lie in equilibrium apart from n + 1 “central” ones which lie on
periodic orbits satisfying the resonance condition
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This state is time—periodic with period 7' = 27 /w and trivially space—localised. We seek the conditions under which
this state will be continued for € # 0 by keeping the previously mentioned attributes. At this limit, the motion of the
central oscillators is described by

J; = const. 1=0,...,n,

where (w;,J;) are the action angle-variables of the uncoupled oscillators, ¥; are the initial angles and w; are the
corresponding angular frequencies. The T-periodic motion, which is described by (3), can be continued for e # 0
small enough, to form a T-periodic (n + 1)-site breather, provided that the following conditions hold:

1) The anharmonicity condition of the individual oscillators, i.e. dw;/dJ; # 0, at least in the neighbourhood of the
specific periodic orbit.

2) The nonresonance condition: w, # mw, VYm € N, where w, denotes the phonon frequency of the system.
However, even if both of these conditions hold, not all the states of the anticontinuous limit will be continued to a
multibreather. In addition, the phases of the oscillators in this limit must be such that the system of equations

O(H1)
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has simple zeros, i.e. it is also required that det ‘82<H1>/8zi8zj| # 0, where z; = k;¥;_1 —k;_19;. z; is a generalization
of the notion of phase difference between the successive oscillators, in order to include resonances other that the 1 : 1.
Here,

(Hy) = /0 Hodt (5)

is the average value of the perturbative term of the Hamiltonian calculated along a periodic orbit of the uncoupled
system over a time-period.
As it is thoroughly explained in Ref. [33], Eq. (4) can be written as
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where A; jis the jy, Fourier coefficient of the iy, oscillator. From Eq. (6) we conclude that z; = 0, 7 always satisfy
(4) while, if special symmetry conditions hold, one could also obtain additional solutions.

If the action-angle canonical transformation is known, one could search for these solutions in (4) or its equivalent
(6). However, in the generic case where the explicit form of the action-angle variables is not known, a method to
calculate the necessary quantities has been developed in Ref. [34]. According to this method, the system of equations
(4) is equivalent to the following one:

T
0H, .
S pdt =0, =1...n.
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This system can easily be solved numerically, as will be later shown in a specific example.



Besides the existence of the multibreather-solutions, the phase difference between the oscillators determines also its
linear stability, as shown in Refs. [33, 35].

The linear stability of a periodic orbit (which in the specific case is the multibreather), is defined by the eigenvalues
of the corresponding Floquet matrix \;. For € = 0, these eigenvalues lie in two complex conjugate bundles at e*<rTs
except the 2n + 2 eigenvalues which correspond to the n + 1 central oscillators which lie at unity. For |e] # 0 < 1,
the eigenvalues of the non-central oscillators move along the unit circle being of the same Krein kind, while the ones
of the central oscillators are given by

)\'L' = eaiTa (8)

where o; are the corresponding 2n + 2 characteristic exponents. As it was proven in Ref. [32] (and also stated, in the
present formalism, in Ref. [31]), these exponents are given in the leading order of approximation by

o = :E\@O’ﬂ + O(e), 9)
while 032‘1 coincide with the n + 1 eigenvalues of the stability matrix
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Therefore, if the various values of Ufl, i.e. the eigenvalues of F, are negative and distinct, the multibreather is linearly
stable. If there are no other solutions than the standard ones the corresponding linear stability is well defined by the
knowledge of the resonant angles z;, the kind of potential anharmonicity — i.e. hardening (Ow;/d.J; > 0) or softening

(Ow;/0J; < 0) — and the sign of e. Let us now apply this method in a specific example, namely the equation of
transverse dust grain motion in a dust crystal.

with

III. TRANSVERSE DUST GRAIN MOTION IN A DUST CRYSTAL

We shall consider the vertical (off-plane, ~ %) charged grain displacement in a dust crystal (assumed quasi-
one-dimensional, of infinite length: identical grains of charge ¢ and mass M are situated at z,, = nrg, where
n=..,-2,—-1,0,1,2 ..), by taking into account the intrinsic nonlinearity of the sheath electric (and/or magnetic)
potential. The in-plane (longitudinal, acoustic, ~ & and shear, ~ ¢) degrees of freedom are assumed suppressed; this
situation is indeed today realized in appropriate experiments [27, 28], where a laser impulse triggers transverse dust
grain oscillations, while a confinement potential ensures the chain’s in-plane stability.

A. Equation of motion

The vertical grain displacement obeys an equation in the form [22, 23]

d?5z,, y ddzn,
dt? dt

+ wg (0zp41 + 0zp—1 —282,) + wg 82n + a(02,)% + B(62,)° =0, (10)

where 2z, (t) = z,(t) — 2o denotes the small displacement of the n—th grain around the (levitated) equilibrium position
20, in the transverse (z—) direction. The characteristic frequency wy = [—q®’(ro)/(Mro)] /2 results from the dust
grain (electrostatic) interaction potential ®(r), e.g. for a Debye-Hiickel potential [36, 37]: ®p(r) = (q/r) e "/,
one has: w§ p = ¢*/(Mr3) (14 70/Ap) exp(—ro/Ap), where Ap denotes the effective DP Debye radius [15]. The
damping coefficient v accounts for dissipation due to collisions between dust grains and neutral atoms. The gap
frequency w, and the nonlinearity coefficients «, 3 are defined via the overall vertical force: F(z) = Fo/p — Mg =
—Mw2dzn + o (62,)% 4+ 8 (020)°] 4+ O[(62,)*], which has been expanded around z by formally taking into account
the (anharmonicity of the) local form of the sheath electric (follow exactly the definitions in Ref. [22], not reproduced
here) and/or magnetic [38] field(s), as well as, possibly, grain charge variation due to charging processes [23]. Recall
that the electric/magnetic levitating force(s) F./,, balance(s) gravity at zp. Notice the difference in structure from
the usual nonlinear Klein-Gordon equation used to describe one-dimensional oscillator chains — cf. e.g. Eq. (1) in
Ref. [6]: TDLWSs (‘phonons’) in this chain are stable only in the presence of the field force I/,



For convenience, the time and vertical displacement variables may be scaled over appropriate quantities, i.e. the
characteristic (single grain) oscillation period w;l and the lattice constant rg, respectively, viz. t = w>'7 and

g
0z, = Toqn; Eq. (10) is thus expressed as:

gy
dr?

+E(qn+1+Qn71_2qn)+ Qn+alq721+/6’/qz:07 (11)

where the (dimensionless) damping term, now expressed as (v/wq)dg,/dT = v'§,, will be henceforth omitted in the
left-hand side. The coupling parameter is now € = w3 /wg, and the nonlinearity coefficients are now: o/ = ary/ wg and

8 = 67"(2)/(,(13.

B. Linear transverse dust lattice waves

Retaining only the linear contribution and considering oscillations of the type, dz, ~ expl[i (knro — wt)] + c.c.
(complex conjuguate) in Eq. (10), one obtains the well known transverse dust lattice (TDL) wave optical-mode-like
dispersion relation

w? = wg — 4w? sin® (k;“o) , (12)

or
&% =1 —4e sin®(k/2), (13)
See that the wave frequency w = @w, decreases with increasing wavenumber k = 27/A = 15/7"0 (or decreasing

wavelength \), implying that transverse vibrations propagate as a backward wave: the group velocity v, = w'(k) and
the phase velocity wp, = w/k have opposite directions (this behaviour has been observed in recent experiments). The
modulational stability profile of these linear waves (depending on the plasma parameters) was investigated in Refs.
[22, 23]. Notice the natural gap frequency w(k = 0) = wy = Wmaa, corresponding to an overall motion of the chain’s
center of mass, as well as the cutoff frequency wmin = (wg — 4wd)1/? = w, (1 — 4€)'/? (obtained at the end of the first
Brillouin zone k = 7 /7o) which is absent in the continuum limit, viz. w? ~ w2 —wi k*rg (for k < ry 1); obviously, the
study of wave propagation in this (k < m/rg) region invalidates the continuum treatment employed so far in literature.
The essential feature of discrete dynamics, to be retained here, is the (narrow) bounded TDLW (‘phonon’) frequency

band, limited in the interval w € [(wg — 4wV 2 w,]; note that one thus naturally obtains the stability constraint:

wi/wg =€ < 1/4 (so that w e R V& € [0,7/r]).
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FIG. 1: The dispersion relation of TDL vibrations — see Eq. (13): the frequency w (normalized over wg) is depicted
against the (reduced) wavenumber kro. The value of wo/wy (~ coupling strength) increases from top to bottom: e =
0.016, 0.02, 0.051, 0.181. The uppermost (lowermost) curve, i.e. for e = 0.016 (0.181, respectively) correspond to the the
exact experimental data in Ref. [27] ([28]). The upper curve(s) is (are) more likely to favor gap breathers, since the breather
frequency easily satisfies the existence condition (3).

We needn’t go into further details concerning the linear regime, since it is covered in the literature. We shall,
instead, see what happens if the nonlinear terms are retained, in this discrete description.



C. Parameter values in real experiments

Typical parameter values may be supplied by experiments. In a generic fashion, gaz discharge experiments are
characterized by specific plasma conditions (plasma density, pressure, ion flow, ...); these affect the nonlinear mech-
anisms involved in the dynamics of the dust crystals, which are formed in the sheath area right above the negative
electrode. In a generic fashion, the higher the plasma density and/or pressure, the higher the anharmonicity of the
vertical electric potential ®(z). For sufficiently high density and/or pressure values, the form of ®(z) can be modelled
by a parabola [36, 37]. For lower densities, on the other hand, ®(z) develops an anharmonicity, characterized e.g. by
a strong cubic term: this asymmetry is due to the existence of the electrode wall on one side and of the plasma on the
other. In fact, the asymmetric form of ®(z) qualitatively accounts for crystal destabilization when large displacements
from equilibrium are attained; see the discussion in [24, 25]. Furthermore, lower plasma densities imply lower (in
some cases negligible) damping, a fact which may justify considering the conservative (undamped) case, at a first
step. For our purposes, some typical values may be deduced from the (few) experiments already carried out, which
will be summarized below (in chronological order). Future experiments may hopefully provide better insight in this
mechanism.

The values of the anharmonicity parameters o’ and o’ may be deduced from dusty plasma experiments on
nonlinear vertical dust lattice oscillations [24, 26-28]. For instance, the Kiel (Germany) experiment by Zafiu et
al. [26] — using a laser to trigger nonlinear vertical dust grain oscillations — has provided the values: a/w? =
+0.02; 4+0.016; —0.27 (mm~"') and /w? = —0.16; —0.17; =0.03 (mm~?) (successively, by gradually increasing the di-
ameter of the dust grains; see Table I in Ref. [26]). In our notation, this implies: o’ ~ +0.02;+0.016; —0.27, and
B ~ —0.16; —0.17; —0.03 (for a lattice spacing of the order of 7y ~ 1 mm). Note that damping was very low (¢’ ~ 0.02),
thus a posteriori justifying its being neglected. These (three) sets of values are shown in table I below, for reference;
sets IT and IIT are depicted in Fig. 2 below.

2 2
1.75 1.75
1.5 1.5
1.25 1.25
1 1
0.75 0.75
0.5 0.5
.25 .25
-2 -1 1 2 -2 -1 1 2
Set II: o/ = +0.016, 3 = —0.17 o =—-0.27, 3/ = —0.03

FIG. 2: The anharmonic potential V(z) is depicted vs. the displacement x — see Eq. (14) — for two sets of values (II and III)
from the Kiel experiment [26]; cf. Table I. The harmonic case (o’ = 8’ = 0) is also supplied for reference. Note the existence of
a finite potential barrier, possibly accounting for the dust crystal dissociation (“melting”) reportedly observed in experiments.

Along similar lines, the experiment on anharmonic single grain oscillations by Ivlev et al. [24], carried out in
Garching (Germany), provides curve fitting data for ®(z), i.e. a/w; = —0.5mm™" and #/w? = 0.07mm™2. One
thus deduces o/ = —0.25 upto —0.75, and 3’ = 0.018 — 0.158 (for a lattice spacing, say typically, of the order of
7o ~ 0.5—1.5mm). Again, the damping coefficient v was as low as v/27 ~ 0.067 sec™ !, so that (with w, /27 ~ 17sec™!)
one has: v/ = v/wy ~ 0.004 (the pressure in that experiment was kept as low as 0.5 Pa; see in Ref. [24] for technical
details on the experimental device).

The experiment on linear TDLWs by Misawa et al. [27] allows for a rough estimation of the coupling strength (still
for low pressure; see details in Ref. [27]): w, ~ 155sec™ and wy ~ 19.5sec™! (derived from Fig. 3a therein), which
give € ~ 0.016. The effective damping term was kept as low as v ~ 0.239sec™!, i.e. v/ = v/w, ~ 0.00154.

Finally, the experiment by Liu et al. [28] was characterized by a frequency band located between 11 and 21 Hz,
implying € = wj /w2 = (21% — 112)/(4 - 21%) ~ 0.181. For reference, the lattice spacing constant varied between ro =
1.2, 0.8, and 0.72 mm, giving k = r9/Ap ~ 1.4, 1.0 and 0.84 (for a Debye length of A\p = 0.86 mm).



IV. TRANSVERSE MULTIBREATHER EXCITATIONS IN DUST CRYSTALS

Eq. (11) can be generated by a Hamiltonian of the form (1) by considering a quartic polynomial potential of the
form
V(x):x2+a'x3+b'x4, (14)

and considering negative values of € (in account of inverse dispersion).

The values of the anharmonicity parameters a’ and b’ may be deduced from dusty plasma experiments on nonlinear
vertical dust lattice oscillations [24, 26—-28] (see the discussion above). For instance, the (three) sets of values obtained
from the Kiel (Germany) experiment by Zafiu et al. [26] are shown in table I, here.

TABLE I. Experimental data: three sets of sheath potential anharmonicity values, obtained from Ref. [26].
I 11 11T

a|0.02 [0.016{-0.27
b|-0.16{-0.17|-0.03

The anharmonicity condition is satisfied in set II and III since dw/dJ < 0 in the entire range of allowed values of
J as it can be seen in Fig. 3. The computations of w(J) has been made numerically since the explicit transformation
is not known. For a more detailed description see in Ref. [34].
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FIG. 3: w(J) for sets II and IIL.

(I1) (111)

FIG. 4: F(xzg0) for sets II and III.

To make things specific, we choose to have two central oscillators in the anticontinuous limit moving with the same
frequency wy = we = w, which satisfies the nonresonance condition and will also be the frequency of the multibreather.
We now have to check condition (4). As already shown above, the z; = 0,7 solutions always exist. Since the
action-angle transformation is not known, to check for extra solutions, one has to solve the equivalent equation (6)
Tom

o 83:2 pgdt 0 ( 5)



This equation defines a relationship between 7 and x3. The periodic orbits are thus defined, meaning that the energy
FE; end the period T; of the orbits are known. The only unknown is the set of initial conditions for the orbits z19, p1g,
Z20, p20. We fix £1¢9 = 0 and choose the specific p1g > 0 which determines the desired periodic orbit. So, the only free
variable is x99, since we can choose pyg from the equation of energy. We now need to solve the equation

T
F(.IQQ) = / .Z‘lpgdt =0. (16)
0

This equation is two branched, i.e. yields one branch for each choice of sign for the momentum pog. In fig. 4, these
two branches are presented togother in the same diagram for sets II and III, the two roots of F'(zgg) correspond to the
standard breather solutions z = 0, 7. As for the stability of these solutions, following the arguments in Refs. [33, 35],
the solution with z = 0 will be the linearly stable one and, since there are no other solutions besides the ones already
mentioned, this solution will be the only linearly stable one. In particular, in Ref. [33] it is shown that

0% = _kz% Z m?A2 cosmz, (17)
m=1

which for € < 0 confirms what has been claimed above.

We have computed this solution for only two central oscillators, but it would be the same for any number n of
central oscillators since, as it is shown in [34], the system is consisted by independent equations. In that case, the
only linearly stable solution would be z; =0, for i =1,...,n.

The above mentioned solutions is proven to be linearly stable for small enough €. However, as the absolute value of
€ increases, the eigenvalues corresponding to the central oscillators will collide to the phonon band and, since they are
of opposite Krein sign, they can leave the unit circle forming a complex quadruple; the multibreather thus becomes
unstable.

In order for the solutions to be physically relevant the experimentally measured value of the coupling constant e
should be inside the stability region. So, the next problem is to determine the value of the coupling constant where
the solution bifurcates to become unstable. As can be seen in the diagrams below the point where it bifurcates is
€ ~ —0.045 which confirms that this kind of motion can be supported by the specific model.

e=—0.02 e = —0.051

FIG. 5: The eigenvalues of the Floquet matrix for two different values of the coupling constant for the second set

V. CONCLUSIONS

This study was dedicated to an investigation of the occurrence of multibreather-type nonlinear excitations in one-
dimensional periodic arrangements (chains) which are characterized by an inverse dispersion (in the linear regime),
as well as an an asymmetric anharmonic on-site potential (i.e. non-parabolic, possessing a strong cubic term).

Focusing on transverse dust lattice vibrations in a plasma crystal, as a case study of such a system, we have
shown that dust crystals can support multibreather vibrational motion. The possibility of the occurrence of dust DB



0

FIG. 6: The evolution of a 2-breather for ¢ = —0.02, for the second set of values above.

structures was investigated, with respect to real dust crystal parameters, namely the coupling strength and the sheath
potential anharmonicity parameters.

The analytical method employed is generic. Once the availability of the necessary physical ingredients for multi-
breather occurrence (nonlinearity and lattice discreteness, in particular) are ensured, the substrate potential asymme-
try and inverse dispersive behavior pose no obstacle to the formation and subsistence of such excitations. The results
presented here may be relevant in the study of systems like atomic chains, colloidal matter, ultra-cold plasmas etc.
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