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1. Introduction

The relation of macroscopic random motion to microscopic particle
dynamics has been a long standing problem. In a generic manner,
fluctuations due to particle interactions (collisions ) are modeled by
a Fokker-Planck-type equation (FPE)(related to a Langevin-type
equation of motion), which may either be derived intuitively, via
physical phenomenology or, formally, through kinetic-theoretical
arguments. In the latter framework, a number of works in Non-
Equilibrium Statistical Mechanics have been devoted to the study
of the relaxation of a small subsystem weakly interacting with a
heat bath. A common aim of such studies is the derivation of a
kinetic equation, describing the evolution in time of a phase-space
probability density function. This is achieved by using either per-
turbation theory (typically a BBGKY hierarchy of equations for
reduced distribution functions [1]) or formal theories for open sys-
tems (e.g. projection-operator methods [2]). In a generic manner,
both approaches rely on a generalized master equation (GME) ,
obtained to 2nd order in the interaction. The kernel of the GME
has to be evaluated along particle trajectories, so the influence of
the field on microscopic laws of motion is expected to modify the
form of the collision operator.
This work aims in discussing a general method for the rigorous
derivation of a Fokker-Planck-type equation from microscopic dy-
namics, taking into account the existence of external force fields
and interactions (possibly long-range) between particles. Explicit
general expressions will be derived for diffusion and friction coeffi-
cients.

2. The model: Hamiltonian and equations of motion

We consider a test-particle (t.p.), say Σ, surrounded by (and
weakly coupled to) a homogeneous reservoir R; X = (x,v) ≡
(xΣ(t),vΣ(t)) and XR ≡ {Xj} = {xj(t),vj(t), j =
1, 2, 3, ..., N} will denote the coordinates of the test- (Σ−) and
reservoir- (R−) particles. Both subsystems are subject to an ex-
ternal force field.
The Hamiltonian of the system is:

H = HR + HΣ + λHI (1)

where HR (HΣ) denotes the Hamiltonian of the reservoir (t.p.)
alone:

HR =

N∑
j=1

Hj +
∑
j<n

N∑
n=1

Vjn

where the single-particle Hamiltonian Hj (j = 1, 2, ..., N, Σ) takes
into account the external field. HI stands for the interaction (as-

sumed to be weak: λ � 1) between Σ and R: HI =
∑N

n=1 VΣn,
where Vij ≡ V (|xi−xj|) (i, j = 1, 2, ..., N, Σ) is a binary (possibly
long-range, electrostatic) interaction potential.
The resulting equations of motion are:

ẋ = v , v̇ = F0(x,v) + λFint(x,v;XR; t) (2)

The force F0 is due to the external field. The interaction force
Fint(x,v;XR; t) = − ∂

∂x

∑
V (|x − xj|) is actually the sum of

interactions between Σ− and R− particles surrounding it; it rep-
resents a purely random process, as the reservoir is assumed to be
in a homogeneous equilibrium state. In fact, Fint defines a zero-
mean Gaussian process; furthermore, in many physical problems
of interest, it comes out to be a stationary process, as the force
correlations – see (12) – come out to be: Cij(t, t− τ ) = Cij(τ ) [3].
We will assume that the zeroth-order (‘free’) problem of motion
(i.e. (2) for λ = 0) yields a known analytic solution in the form:

v(0)(t) = M′(t)x + N′(t)v

x(0)(t) = x +

∫ t

0
dt′ v(t′) = M(t)x + N(t)v

i.e. (
x(0)(t)

v(0)(t)

)
=

(
M(t) N(t)
M′(t) N′(t)

) (
x
v

)
≡ E

(
x
v

)
; (3)

the initial condition is: {x(0)(0),v(0)(0)} = {x,v}, i.e. E(0) = I.
For a given dynamical problem in d dimensions (d = 1, 2, 3), the
form of the d×d matrices {M(t),N(t)} depends on the particular
aspects of the dynamical problem taken into consideration. The
2d×2d matrix E(t) in (3) satisfies the group property : E(t)E(t′) =
E(t + t′) ∀t, t′ ∈ < , implying E(−t) = E−1(t) (& algebraic
relations for M,N). Dynamical systems obeying Eq. (3) include:

(i) linear oscillator models : F (0) = −mω2x, so(
x(0)(t)

v(0)(t)

)
=

(
cos ωt ω−1 sin ωt

−ω sin ωt cos ωt

)(
x(0)
v(0)

)
≡ E(t)

(
x(0)
v(0)

)
.

(ii) magnetized plasma [3] (see §6. below), and

(iii) the free motion (no-field-) limit a: F(0) = 0 [cf. (2)] so

{x(t),v(t)} = {x + tv,v} , v = cst.

i.e. Mij = δij, Nij = δij t, and thus M ′
ij = 0, N ′

ij = δij.
aIn the case of a central long-range interaction potential (e.g. gravitational or electrostatic interactions),

this limit is known to yield the Chandrasekhar limit [4], describing stellar clusters, and the Rosenbluth-
MacDonald-Judd limit [5] in electrostatic plasma, respectively.

3. Statistical formulation

Let ρ = ρ({X,XR}; t) be the total phase-space distribution func-
tion (d.f.), normalized to unity:

∫
dX ρ = 1.

The equation of continuity in phase space Γ reads:

∂ρ

∂t
+ vj

∂ρ

∂xj
+

∂

∂vj
(
1

m
Fj ρ) = 0 (4)

where a summation over j (= 1, 2, 3, ..., N, Σ) is understood.
The method we follow consists in defining appropriate ‘s-body’ (s =
1, 2, 3, ...) reduced distribution functions (rdf ), among which the
(1−body-) test-particle rdf : f (x,v; t) = (I, ρ)R ≡

∫
ΓR

dXR ρ

(normalized to unity) and then appropriately integrating the total
((N+1)−particle) Liouville equation (4) in order to obtain a system
of coupled evolution equations for the rdf s.
This is rather standard procedure so details will be omitted here,
since they can be found in the referencesa.
In seek of an evolution equation for f (t), the BBGKY hierarchy
of equations can be truncated to 2nd order in λ. One obtains:

(∂t − L
(Σ)
0 ) f (X; t) = λ2

∫
dX1 LI g(X,X1; t) +O(λ3)

(∂t − L
(Σ)
0 − L

(1)
0 ) g(X,X1; t) = λ LI F1(X1) f (X) +O(λ2) (5)

where L
(j)
0 (j ∈ {Σ, 1R}) is the “free” Liouvillian (given the field):

L
(j)
0 · = −vj

∂ ·
∂xj

− 1

mj

∂

∂vj
(F0 · ) (6)

and LI ≡ LΣ1 is the binary interaction operator:

LI = −Fint(|x− x1|)
(

1

m

∂

∂v
− 1

m1

∂

∂v1

)
. (7)

As obvious, f = f (X; t), F1(X1R
) and f2(X,X1; t) denote the

Σ−1-body, R−1-body and (1R+Σ)−2-body rdf s respectively and
g = g(X,X1; t) is the ‘two-body’ (1R + Σ) correlation function:
g = f2−F1 f . Note that the mean-field (Vlasov) term, in order λ1,
disappears for reasons of symmetry, since we assume the reservoir
to be in a homogeneous equilibrium state F1 = n φeq(v1); n = N

V

is the reservoir particle density; obviously: ∂F1/∂t = L
(1)
0 F1 = 0.

3.1 The Generalized Master Equation

Neglecting initial correlations, equations (5) lead to the Non-
Markovian Generalized Master Equation:

∂tf−L0 f = n

∫ t

0
dτ

∫
dx1 dv1 LI U0(τ ) LI φeq(v1) f (x,v; t−τ )

(8)

(f = f (x,v; t)), where L0 ≡ L
(Σ)
0 in the left-hand-side is the

“free” Liouville operator defined in (6), LI is the binary interaction

Liouville operator LΣ1 (see (7)) and U0(τ ) = U
(Σ)
0 (τ ) U

(1)
0 (τ ) is an

evolution operator (propagator) related to the formal solution of
the “free” (collisionless) Liouville equation (e.g. (5a) for λ = 0):

f (t) = eL
(j)
0 t f (0) ≡ U

(j)
0 (t) f (0) (j ∈ {Σ, 1}).

4. A ‘quasi-Markovian’ (Θ−) approximation

A widely used ‘markovian’ assumption consists in:
(i) substituting with the zeroth-order solution

f (t− τ ) ≈ e−L0τ f (t) ≡ U0(−τ ) f (t) , and

(ii) evaluating the kernel asymptotically i.e. taking t →∞ in (8) .
Important comment :
the time-propagator U(t) does not commute with Γ- gradients:

U
(j)
0 (t)

∂

∂vj
U

(j)
0 (−t) = NT

j (t)
∂

∂xj
+ N′

j
T

(t)
∂

∂vj
. (9)

(j = Σ, 1R) A similar expression holds for the gradient ∂
∂x [3].

Hence, the field should rigorously appear in the collision term.

4.1 The homogeneous case: f = f (v; t)

For a spatially uniform system: f = f (v; t), combining (6), (7)
and (9) into the kernel of the GME (8), we obtain the PDE

∂f

∂t
+

1

m
F0

∂f

∂v
=

∂

∂v

(
D

∂f

∂v
+

m

m1
af

)
(10)

which takes the form of a 3d Fokker-Planck-type equation (FPE):

∂f

∂t
+

1

m
F0

∂f

∂v
= − ∂

∂vi
(Fi f ) +

∂2

∂vi ∂vj
(Dij f ) . (11)

The vector F in the right-hand-side (rhs): Fi = (1 + m
m1

)
∂Dij
∂vj

≡

− m
m1

aj +
∂Dij
∂vj

represents the dynamical friction force suffered by

the particle, due to interactions with its environment, and D is a
(positive definite) diffusion matrix given by:

D =
n

m2

∫ ∞

0
dτ

∫
dx1

∫
dv1 φeq(v1)Fint(|x(0) − x1

(0)|)⊗

Fint(|x(0)(−τ )− x1
(0)(−τ )|)N′T (τ ) , (12)

aSee e.g. in [1]; also, see in [3]b for details on the method as adapted to a test-particle problem.

or

Dij =
1

m2

∫ ∞

0
dτ Cik(x,v; t, t− τ ) N ′

jk(τ ) . (13)

Cik are the force correlations (Kubo coefficients); cf. Eqs. (12, 13).

4.2 An ill-defined 6d Fokker-Planck equation

For f = f (x,v; t), one obtains the (6+1)-variable PDE

∂f

∂t
+ v

∂f

∂x
+

1

m
F0

∂f

∂v
=

∂

∂v

(
D

∂f

∂v
+ G

∂f

∂x
+

m

m1
af

)
; (14)

the form of G is obtained from rhs(12) upon NT → N.
Eq. (10) takes the form of a 6-dimensional FPE:

∂f

∂t
+v

∂f

∂x
+

1

m
F0

∂f

∂v
= − ∂

∂vi
(F (Θ)

i f )+
∂2

∂vi ∂vj
(D

(Θ)
ij f ) . (15)

Here, F (Θ)
i represents a 6d friction vector, and D(Θ)

ij is the matrix:

Dij =

(
0(t) 1

2G
T (t)

1
2G(t) D(t)

)
. (16)

Crucial remark: The diffusion matrix D(Θ)
ij is not positive definite;

therefore, (10) determines an ill-defined kinetic operator: indeed,
its action does not preserve the positivity of the d.f. f .

5. A ‘Markovian’ (Φ−) kinetic operator

We have considered, for classical systems, the Φ kinetic operator:

Φ = lim
T→∞

1

2T

∫ T

−T
dt′ U (0)(t′) Θ U (0)(−t′) (17)

which was introduced in the theory of quantum open systems [6].
The construction of the Φ operator provides a well-defined FP ki-
netic equation in the 6d Γ-space {x,v}; cf. Eq. (15), setting
Θ → Φ therein. In specific, the Φ operator:
– preserves the norm and the positivity of the d.f. f ;
– satisfies an H-theorem, as can be proven analytically [3]b;
– accounts for space diffusion [a new feature; cf. (19) below].

6. A Markovian (Φ−) plasma kinetic equation

To clarify our methodology, we have considered the motion of a
test-particle (charge eα, mass mα, e.g. α = e, i, ...) in a (uniform

and stationary) magnetic field B = Bẑ. F(0) is the Lorentz force

FL =
eα

c
(v ×B) ≡ sα mα Ωα (v × ẑ)

where we defined: Ωα = |eα|B/(mαc) and sα = eα/|eα| = ±1.

The problem of motion: dx
dt = v , dv

dt = e
mc (v × B) yields a

well-known helicoidal solution, viz. Eq. (3) with M = I,M′ = 0
and

N′α(t) = Rα(t) =

 cos Ωt s sin Ωt 0
−s sin Ωt cos Ωt 0

0 0 1


Nα(t) =

∫ t

0
dt′Rα(t) = Ω−1

 sin Ωt s (1− cos Ωt) 0
s (cos Ωt− 1) sin Ωt 0

0 0 Ωt

 .

(18)
We have constructed the Θ and Φ F.P. equations for this model.
The latter reads – for f = f (x,v; t) –

∂f

∂t
+v

∂f

∂x
+

e

mc
(v ×B)

∂f

∂v
≡ Φ2 f (x,v; t)

=

[(
∂2

∂v2
x

+
∂2

∂v2
y

)[
D⊥(v)f

]
+

∂2

∂v2
z

[
D‖(v)f

]
+2 s Ω−1

[
∂2

∂vx∂y
− ∂2

∂vy∂x

][
D⊥(v)f

]
+

∂2

∂z∂vz

[
D

(V X)
‖ (v)f

]
+ Ω−2 [Q(v) + D⊥(v)

]( ∂2

∂x2
+

∂2

∂y2

)
f +

∂2

∂z2

[
D

(XX)
‖ f

]
− ∂

∂vx

[
Fx(v) f

]
− ∂

∂vy

[
Fy(v) f

]
− ∂

∂vz

[
Fz(v) f

]
+ s Ω−1Fy(v)

∂

∂x
f − s Ω−1Fx(v)

∂

∂y
f ; (19)

— the blue terms (homogeneous part) coincide (Θ vs. Φ);
— the red terms (non-uniform part) are new in Φ;
— the terms in magenta present infinities, due to resonance with
the continuum spectrum of free motion (‖ B part) (details in [3]b).
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