Noise and damping from microscopic laws : a kinetic-theoretical classical test-particle approach

 Ioannis KOURAKIS and Alkis GRECOS

 Ioannis KOURAKIS and Alkis GRECOS
 ${ }^{2}$ Euratom - Hellenic Republic Association, University of Thessaly, GR 38334 Volos, Greece

$$
\begin{equation*}
D_{i j}=\frac{1}{m^{2}} \int_{0}^{\infty} d \tau C_{i k}(\mathbf{x}, \mathbf{v} ; t, t-\tau) N_{j k}^{\prime}(\tau) \tag{13}
\end{equation*}
$$

$C_{i k}$ are the force correlations (Kubo coefficients); cf. Eqs. (12, 13).

4.2 An ill-defined 6d Fokker-Planck equation

For $f=f(\mathbf{x}, \mathbf{v} ; t)$, one obtains the $(6+1)$-variable PDE

$$
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}+\frac{1}{m} \mathbf{F}_{0} \frac{\partial f}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left(\mathbf{D} \frac{\partial f}{\partial \mathbf{v}}+\mathbf{G} \frac{\partial f}{\partial \mathbf{x}}+\frac{m}{m_{1}} \mathbf{a} f\right) ;
$$

the form of \mathbf{G} is obtained from rhs(12) upon $\mathbf{N}^{T} \rightarrow \mathbf{N}$.
Eq. (10) takes the form of a 6 -dimensional FPE:

$$
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathrm{x}}+\frac{1}{m} \mathbf{F}_{0} \frac{\partial f}{\partial \mathbf{v}}=-\frac{\partial}{\partial v_{i}}\left(\mathcal{F}_{i}^{(\Theta)} f\right)+\frac{\partial^{2}}{\partial v_{i} \partial v_{j}}\left(D_{i j}^{(\Theta)} f\right)
$$

Here, $\mathcal{F}_{i}^{(\Theta)}$ represents a 6 d friction vector, and $\mathcal{D}_{i j}^{(\Theta)}$ is the matrix:

$$
\mathcal{D}_{i j}=\left(\begin{array}{cc}
\mathbf{0}(t) & \frac{1}{2} \mathbf{G}^{T}(t) \tag{16}\\
\frac{1}{2} \mathbf{G}(t) & \mathbf{D}(t)
\end{array}\right)
$$

Crucial remark: The diffusion matrix $\mathcal{D}_{i j}^{(\Theta)}$ is not positive definite; therefore, (10) determines an ill-defined kinetic operator: indeed, its action does not preserve the positivity of the d.f. f.

5. A 'Markovian' ($\Phi-$) kinetic operator

We have considered, for classical systems, the Φ kinetic operator:

$$
\Phi=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d t^{\prime} U^{(0)}\left(t^{\prime}\right) \Theta U^{(0)}\left(-t^{\prime}\right)
$$

which was introduced in the theory of quantum open systems [6]. The construction of the Φ operator provides a well-defined FP kinetic equation in the $6 \mathrm{~d} \Gamma$-space $\{\mathbf{x}, \mathbf{v}\}$; cf. Eq. (15), setting $\Theta \rightarrow \Phi$ therein. In specific, the Φ operator:
preserves the norm and the positivity of the d.f. f
satisfies an H-theorem, as can be proven analytically [3]b;
accounts for space diffusion [a new feature; cf. (19) below].

6. A Markovian ($\Phi-$) plasma kinetic equation

To clarify our methodology, we have considered the motion of a test-particle (charge e_{α}, mass m_{α}, e.g. $\alpha=e, i, \ldots$) in a (uniform and stationary) magnetic field $\mathbf{B}=B \hat{z} . \mathbf{F}^{(0)}$ is the Lorentz force

$$
\mathbf{F}_{L}=\frac{e_{\alpha}}{c}(\mathbf{v} \times \mathbf{B}) \equiv s_{\alpha} m_{\alpha} \Omega_{\alpha}(\mathbf{v} \times \hat{z})
$$

where we defined: $\Omega_{\alpha}=\left|e_{\alpha}\right| B /\left(m_{\alpha} c\right)$ and $s_{\alpha}=e_{\alpha} /\left|e_{\alpha}\right|= \pm 1$. The problem of motion: $\frac{d \mathbf{x}}{d t}=\mathbf{v}, \quad \frac{d \mathbf{v}}{d t}=\frac{e}{m c}(\mathbf{v} \times \mathbf{B})$ yields a well-known helicoidal solution, viz. Eq. (3) with $\mathbf{M}=\mathbf{I}, \mathbf{M}^{\prime}=\mathbf{0}$ and

$$
\mathbf{N}^{\prime \alpha}(t)=\mathbf{R}^{\alpha}(t)=\left(\begin{array}{ccc}
\cos \Omega t & s \sin \Omega t & 0 \\
-s \sin \Omega t & \cos \Omega t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$\mathbf{N}^{\alpha}(t)=\int_{0}^{t} d t^{\prime} \mathbf{R}^{\alpha}(t)=\Omega^{-1}\left(\begin{array}{ccc}\sin \Omega t & s(1-\cos \Omega t) & 0 \\ s(\cos \Omega t-1) & \sin \Omega t & 0 \\ 0 & 0 & \Omega t\end{array}\right)$
We have constructed the Θ and Φ F.P. equations for this model. The latter reads - for $f=f(\mathrm{x}, \mathrm{v} ; t)$

$$
\begin{align*}
\frac{\partial f}{\partial t} & +\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}+\frac{e}{m c}(\mathbf{v} \times \mathbf{B}) \frac{\partial f}{\partial \mathbf{v}} \equiv \Phi_{2} f(\mathbf{x}, \mathbf{v} ; t) \\
= & {\left[\left(\frac{\partial^{2}}{\partial v_{x}^{2}}+\frac{\partial^{2}}{\partial v_{y}^{2}}\right)\left[D_{\perp}(\mathbf{v}) f\right]+\frac{\partial^{2}}{\partial v_{z}^{2}}\left[D_{\|}(\mathbf{v}) f\right]\right.} \\
& +2 s \Omega^{-1}\left[\frac{\partial^{2}}{\partial v_{x} \partial y}-\frac{\partial^{2}}{\partial v_{y} \partial x}\right]\left[D_{\perp}(\mathbf{v}) f\right]+\frac{\partial^{2}}{\partial z \partial v_{z}}\left[D_{\|}^{(V X)}(\mathbf{v}) f\right] \\
& +\Omega^{-2}\left[Q(\mathbf{v})+D_{\perp}(\mathbf{v})\right]\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f+\frac{\partial^{2}}{\partial z^{2}}\left[D_{\|}^{(X X)} f\right] \\
& -\frac{\partial}{\partial v_{x}}\left[\mathcal{F}_{x}(\mathbf{v}) f\right]-\frac{\partial}{\partial v_{y}}\left[\mathcal{F}_{y}(\mathbf{v}) f\right]-\frac{\partial}{\partial v_{z}}\left[\mathcal{F}_{z}(\mathbf{v}) f\right] \\
& +s \Omega^{-1} \mathcal{F}_{y}(\mathbf{v}) \frac{\partial}{\partial x} f-s \Omega^{-1} \mathcal{F}_{x}(\mathbf{v}) \frac{\partial}{\partial y} f \tag{19}
\end{align*}
$$

the blue terms (homogeneous part) coincide (Θ vs. Φ);

- the red terms (non-uniform part) are new in Φ;
the terms in magenta present infinities, due to resonance with the continuum spectrum of free motion (|| \mathbf{B} part) (details in [3]b).

References

> 1] R. Balescu, Equilibrium and Non-Equilbrrium Statistical Mechanics, Wiley, 1975. [2] N. G. Van-Kampen, 1981, 1992, Stochastic Processes in Physics and Chemistry, North-
Holland, Amsterdam. Holland, Amsterdam.
[3] I. Kourakis, Plasma Phys. Cont. Fus, 41587 (1999); idem, PhD thesis, ULB, Belgium (2002). [4] S. Chandrasekhar, Principples of Stellar Dynamics, University Press, Chicago, III (1942). [5] M. N. Rosenbluth, W. M. McDonald \& D. L. Judd, Phys. Rev. 107 (1957) 1. [6] E.B.Davies, Comm.Math.Phys. 39 (1974) 91; A.Grecos, C.Tzanakis, Phys. A 151 (1988), 61.

