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1. Introduction

Bose-Einstein condensation of dilute gases in traps has attracted
a great deal of interest recently, as witnessed in recent reviews
and monographs [1, 2]. Mean-field theory provides a consistent
framework for the modeling of the principal characteristics of con-
densation and elucidates the role of the interactions between the
particles. A generic theoretical model widely employed involves
the Gross-Pitaevskii equation, which bears the form of a nonlinear
Schrödinger-type equation, taking into account boson interactions
(related to a scattering length a), in addition to the confinement
potential imposed on the Bose-Einstein condensates (BECs) in a
potential trap. The scattering length a, although initially taken to
be positive (accounting for repulsive interactions and prescribing
condensate stability), has later been sign-inverted to negative (at-
tractive interaction) via Feshbach resonance, in appropriately de-
signed experiments. This allowed for the prediction of BEC state
instability, eventually leading to wave collapse, which is only pos-
sible in the attractive case (a < 0) [1]. As expected from previous
know-how on problems modelled by generic nonlinear Schrödinger-
type equations (in one or more dimensions), the analysis of BEC
dynamics revealed the possibility for the existence of collective ex-
citations including bright- (for a < 0) and dark- (holes, for a > 0)
type envelope excitations, as well as vortices, which were quite re-
cently observed in laboratories [3, 4]. The evolution of coupled
(“colliding”) BEC wavepackets was recently considered in theoreti-
cal and experimental investigations [5]. Pairs of nonlinearly coupled
BECs are thus modeled via coupled Gross-Pitaevskii equations, in-
volving extra coupling terms whose sign and/or magnitude are a
priori not prescribed. Although theoretical modeling, quite natu-
rally, first involved symmetric pairs of (identical) BECs, for sim-
plicity, evidence from experiments suggests that asymmetric boson
pairs deserve attention [4].
Here, we investigate the stability of a nonlinearly coupled BEC
pair, from first principles. Both BECs are assumed to lie in the
ground state, for simplicity, although no other assumption is made
on the sign and/or magnitude of relevant physical parameters. We
shall derive a set of general criteria for the stability of BEC pairs
(allowing for asymmetry in the wave functions).

2. The formalism

The wave-functions ψ1 and ψ2 of two interacting BECs evolve ac-
cording to the coupled Gross-Pitaevskii equations (CGPEs)

i~
∂ψ1

∂t
+

~2

2m1
∇2ψ1 − V11|ψ1|2ψ1 − V12|ψ2|2ψ1 + µ1ψ1 = 0 ,

i~
∂ψ2

∂t
+

~2

2m2
∇2ψ2 − V22|ψ2|2ψ2 − V21|ψ1|2ψ2 + µ2ψ2 = 0 ,

(1)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator
(a three-dimensional Cartesian geometry is considered, for clarity).
Here mj represents the mass of the jth condensate. According to
standard theory, the nonlinearity coefficients Vjj are proportional
to the scattering lengths aj via Vjj = 4π~aj/mj , while the cou-
pling coefficients Vjl are related to the mutual interaction scattering
lengths ajl via Vjl = 2π~ajl/mjl, where mjl = mjml/(mj +ml)
is the reduced mass. The (linear) last terms in each equation in-
volve the chemical potential µj, which corresponds to a ground
state of the condensate, in a simplified model. These terms may
readily be eliminated via a simple phase-shift transformation, viz.
ψj = ψ′j exp(iµjt) (j = 1, 2); this is however deliberately not done
at this stage, for generality. Nevertheless, one therefore intuitively
expects no major influence of the chemical potentials on the coupled
BEC dynamics (at least for the physical problem studied here).

3. Linear stability analysis

We shall seek an equilibrium state in the form ψj = ψj0 exp[iϕj(t)],
where ψj0 is a (constant real) amplitude and ϕj(t) is a (real) phase,
into the CGP Eqs. (1). We then find a monochromatic (fixed-
frequency) Stokes’ wave solution in the form: ϕj(t) = Ωj0t, where

Ωj0 = −
Vjj
~
ψ2
j0 −

Vjl
~
ψ2
l0 + µj , for j 6= l = 1, 2

.
Let us consider a small perturbation around the stationary state de-
fined above by taking ψj = (ψj0+εψj1) exp[iϕj(t)], where ψj1(r, t)
is a complex number denoting the small (ε � 1) perturbation of
the slowly varying modulated bosonic wave-functions (it includes
both amplitude and phase corrections), and ϕj(t) is the phasor
defined above. Substituting into Eqs. (1) and separating into real
and imaginary parts by writing ψj1 = aj+ibj, the terms in ε yield:

− ~
∂bj
∂t

+
~2

2mj
∇2aj − 2Vjjψ

2
10aj − 2Vjlψj0ψl0al = 0 ,

~
∂aj
∂t

+
~2

2mj
∇2bj = 0 , (2)

where j and l( 6= j) = 1, 2 (this will be henceforth understood
unless otherwise stated). Eliminating bj, these equations yield[

~2 ∂
2

∂t2
+

~2

2m1

(
~2

2m1
∇2 − 2V11ψ

2
10

)
∇2

]
a1

− ~2

m1
V12|ψ10||ψ20|∇2a2 = 0 , (3)

(together with a symmetric equation, obtained by permuting
1 ↔ 2). We now let aj = aj0 exp[i(k · r − Ωkt)]+ com-
plex conjugate, where k and Ωk are the wavevector and the fre-
quency of the modulation, respectively, viz. ∂/∂t → −iΩk and
∂/∂xn → ikn (xn ≡ {x, y, z} for n = 1, 2, 3) i.e. ∂2/∂t2 → −Ω2

k
and ∇2 → −k2. After some algebra, we obtain the eigenvalue
problem: Ma = (~ω)2a, where a = (a1, a2)

T , and the ma-
trix elements are given by Mjj = ej(ej + 2Vjj|ψj0|2) ≡ ~2Ω2

j

and Mjl = −2ejVjl|ψj0||ψl0| ≡ ~2Ω2
jl, where we have defined

ej = ~2k2/2mj . The frequency ω and the wave number k are
therefore related by the dispersion relation(

Ω2
k − Ω2

1

) (
Ω2
k − Ω2

2

)
= Ω4

c , (4)

where the coupling is expressed via Ω4
c = Ω2

12Ω
2
21 ≡ M12M21/~4

in the right-hand side of Eq. (4). This dispersion relation (which is
independent of the chemical potentials µj) relies on absolutely no
assumption on the sign or the magnitude of mj, Vjj and Vjl.

4. Modulational instability of individual BECs

In the vanishing coupling limit, i.e. for Vjl → 0, the dispersion
relation (4) gives Ωk,± = ±Ωj (j = 1, 2). Absolute stability is
ensured if Vjj > 0. On the other hand, if Vjj < 0, a purely

growing unstable mode occurs (viz. Ω2
k < 0) for wavenumbers

below a critical value kj,cr = 2(mj|Vjj|)1/2|ψj0|/~. The growth

rate σ = i
√
−Ω2

k attains a maximum value

σmax = |Vjj||ψj0|2/~ at k = kj,cr/
√

2 .

Recalling the definitions of Vjj, we see that a repulsive/attractive
scattering length (i.e. positive/negative Vjj) prescribes a sta-
ble/unstable (single) BEC behavior. In the following, we shall see
how this simple criterion for stability (Vjj > 0) is modified by the
presence of the interaction between the two condensates.

5. Modulational instability of coupled BECs

The dispersion relation (4) takes the form of a bi-quadratic poly-
nomial equation

Ω4
k − TΩ2

k +D = 0 , (5)

where T = TrM/~2 ≡ Ω2
1 + Ω2

2 and D = DetM/~4 ≡ Ω2
1Ω

2
2 −

Ω2
12Ω

2
21 are related to the trace and the determinant, respectively,

of the matrix M. Eq. (5) has the solution

Ω2
k =

1

2

[
T ± (T 2 − 4D)1/2

]
, (6)

or Ω2
k,± =

1

2
(Ω2

1 + Ω2
2)±

1

2

[
(Ω2

1 − Ω2
2)

2 + 4Ω4
c

]1/2
. (7)

We note that the right-hand side is real/complex if the discrimi-
nant quantity ∆ = T 2 − 4D is positive/negative, respectively.
Stability is ensured (for any wavenumber k) if (and only if) both
solutions Ω2

k,± are positive. This is tantamount to the following

requirements being satisfied simultaneously: T > 0, D > 0 and
∆ > 0. Since the three quantities T , D and ∆ are all even order
polynomials of k, one has to investigate three distinct polynomial
inequalities. The stepstones of the analysis will be outlined in the
following, trying to avoid burdening the presentation with details.
First, the sign of T = k2[(~2k2/4)

∑
j(1/m

2
j) +

∑
j Vjj|ψj0|2/mj]

(see definitions above) depends on (the sign of) the quantity∑
j Vjj|ψj0|2/mj which has to be positive for all k, in order for

stability to be ensured (for any ψj0 and k). This requires that

V11 > 0 and V22 > 0 . (8)

Otherwise, T becomes negative (viz. Ω2
k,− < 0, at least)

for k below a critical value kcr,1 =
√
K1, where K1 =

4(−
∑
j Vjj|ψj0|2/mj)/[~2 ∑

j(1/m
2
j)] > 0 (cf. the single BEC

criterion above); this is always possible for a sufficiently large per-
turbation amplitude |ψ10| if, say, V11 < 0 (even if V22 > 0). There-
fore, only a pair of two repulsive type BECs can be stable; the
presence of one attractive BEC may de-stabilize its counterpart
(even if the latter would be individually stable).
Second, D = Ω2

1Ω
2
2 − Ω2

12Ω
2
21 is an 8th-order polynomial

in k, which can be factorized as D ∼ k4(k4 + bk2 + c),
where b = 4

∑
j(mjVjj)/~2 and c = 16m1m2(V11V22 −

V12V21)|ψ10|2|ψ20|2/~4 (note that b2 − 4c > 0). The stability
requirements b > 0 and c > 0 (in order for D to be positive for
any value of k > 0) amount to m1V11 +m2V22 > 0 and

V11V22 − V12V21 > 0 , (9)

respectively. Only the latter condition for stability has to be
retained, since the former one is automatically covered by (8)
above. To be specific, solving D = 0 for k2 = K2,±, viz.

K2,± = [−b± (b2 − 4c)1/2]/2, we see that:
(i) if b < 0 < c, then 0 < K2,− < K2,+, and D < 0 for√
K2,− < k <

√
K2,+ (instability for short wavelengths);

(ii) if c < 0 (regardless of b), then K2,− < 0 < K2,+, and D < 0
for 0 < k <

√
K2,+;

(iii) if b > 0 and c > 0, then K2,− < K2,+ < 0, so that D > 0.
We see that this kind of instability, – i.e. if the criterion (9) is
not met, is due to the mutual interaction potential Vjl among the
bosons.
Finally, the positivity of ∆ = T 2 − 4D = (Ω2

1 − Ω2
2)

2 + 4Ω2
12Ω

2
21

is only ensured (for every value of k and |ψj0|) if Ω2
12Ω

2
21 ∼

M12M21 > 0, i.e. if
V12V21 > 0 . (10)

If this condition is not met, the solution (6) above has a finite
imaginary part, which accounts for amplitude instability due to
the external perturbation. For rigour, we note that ∆ bears the
form ∆ = k4(c4k

4− c2k2 + c0) (where c4 > 0; the complex expres-
sions for cn are omitted). If ∆′ ≡ c22 − 4c0c4 ∼ −V12V21 < 0, i.e.
if (10) is met, then ∆ > 0 for any value of k. If ∆′ > 0, on the

other hand, denoting K3,± = [c2 ± (c22 − 4c0c4)
1/2]/(2c4), we find

that:
(i) stability is only ensured (since K3,− < K3,+ < 0 < k2) if
c2 < 0 < c0 (nevertheless, this condition depends on the perturba-
tion amplitudes |ψj0| and may always be violated).
(ii) Again, a finite unstable wavenumber interval k ∈
(
√
K3,−,

√
K3,+) is obtained for c2 > 0 and c0 > 0.

(iii) Finally, instability will be observed for k ∈ (0,
√
K3,+) if

c0 < 0 (regardless of c2).

Figure 1. The (square of the) growth rate γ versus the wavenumber k (in units of |Vjj||ψj,0|2/~ and√
2mj|Vjj||ψj,0|/~, respectively) for a symmetric pair of coupled unstable (Vjl < 0 for j, l = 1, 2) BECs

(upper curve) as compared to the single BEC case (lower curve). Notice the higher growth rate, as well as

the extended instability region of the coupled BEC pair, as compared to the single BEC case.

6. Conclusions

Summarizing, we have derived a set of explicit criteria, (8) to (10)
above, which should all be satisfied in order for a boson pair to
be stable. Therefore, an interacting BEC pair is stable only if the
interaction potentials satisfy V11 > 0 and V22 > 0 and V11V22 >
V12V21 > 0. If one criterion is not met, then the perturbation
frequency develops a finite imaginary part and the solution blows
up in time. A few comments and qualitative conclusions should
however be mentioned.
(i) For a symmetric stable boson pair, viz. V11 = V22 > 0 and
V12 = V21, stability is ensured if V 2

12 < V 2
11.

(ii) If one BEC satisfies Vjj < 0, the pair will be unstable: thus,
only pairs consisting of stable bosons can be stable.
Interestingly, in the case of individually unstable BECs (viz. Vjj <
0, for j =1 or 2), the instability characteristics are strongly mod-
ified. For instance, in the case of a symmetric unstable boson
pair (viz. V11 = V22 < 0 and m1 = m2), an extended unstable
wavenumber region and an enhanced growth rate can be obtained,
as can be checked via a tedious calculation; cf. Fig. ??. Further-
more, we have pointed out the appearance of secondary instability
“windows”, i.e. unstable wave number intervals beyond (kcr, k

′
cr),

where kcr 6= 0.
These results follow from a set of explicit stability criteria. Both
BECs were assumed to lie in the ground state, for simplicity, al-
though no other assumption was made on the sign and/or mag-
nitude of the relevant physical parameters. Naturally, a future
extension of this work should consider the external confinement
potential, imposed on the trapped condensates. Our results can be
tested, and can hopefully be confirmed, by designed experiments.
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