Dynamics of coupled Bose-Einstein condensates

Brief overview of an exotic physical issue
825
R.U.B. Ruhr-Universitat Bochum, Bochum, Germany

Email: ioannis@tp4.rub. de
www.tp4.rub.de/~ioannis
in collaboration with P K Shukla, L Stenflo \& M Marklund

Outline

1. Bose-Einstein Condensates (BECs): preliminaries.
2. BEC modelling: the Gross-Pitaevskii Equation (GPE).

Focus: Scattering length - role and sign control via Feshbach resonance.
3. Excitations in single BECs: a brief overview.
4. Coupled BECs (cBECs): notions and ideas.
5. Stability of cBECs.
6.

1. Intro.: Preliminaries on Bose-Einstein Condensates (BECs).

Louis de Broglie hypothesis on wave - particle duality (1924, Nobel 1929):
The wave nature of matter is manifested via the de Broglie wave length $\lambda_{d B}$

$$
\lambda_{d B}=h / m v
$$

(h : Planck's constant; m : mass; v : velocity, e.g. $v_{t h} \sim T^{1 / 2} / m^{1 / 2}$).

- For macroscopic particles (dimension L), in room $T, \quad \lambda_{d B} \approx 10^{-9} L$.
- For atoms (radius r), in room temperature, $\lambda_{d B} \approx r$ (or smaller).
- What should one expect for atoms (\sim wavepackets) at very low T?
- Boson condensation occurs (in sophisticated experiments) at ultra low T ($<T_{c} \sim n K$), where $\left.\lambda_{d B} \approx<r\right\rangle \equiv n^{-3}$ or larger (n : particle density);
\rightarrow wave packets are superposed \& individual particles indistinguishable!

Bose - Einstein condensation: a historical review

1924: Theoretical prediction by Satyendra Nath Bose and Albert Einstein;

- Statistical approach to the photon spectrum of black-body radiation
- Publication (with A.E.) in Zeitschrift für Physik, and subsequent generalization to particle ensembles (by A.E.).
- B.E. statistics permit the occupation of the ground state by a large number of particles at ultra low (but finite) temperature.
- A.E.: "From a certain temperature on, the molecules condense without attractive forces, that is, they accumulate at zero velocity.
The theory is pretty, but is there also some truth to it?"

Bose - Einstein condensation: a historical review (cont.)

1924: Theoretical prediction by Satyendra Bose and Albert Einstein.

- 1995: Experimental confirmation by E. Cornell \& C. Wieman (Boulder, CO), W. Ketterle (Cambridge, MA) and R. Hulet (Rice Univ., Houston, TX): the first BECs are formed in atom gases ($\left.{ }^{87} \mathrm{Rb},{ }^{23} \mathrm{Na},{ }^{7} \mathrm{Li}\right)$.

Bose - Einstein condensation: a historical review (cont.)

1924: Theoretical prediction by Satyendra Bose and Albert Einstein.

- 1995: Experimental confirmation by E. Cornell \& C. Wieman (Boulder, CO), W. Ketterle (Cambridge, MA) and R. Hulet (Rice Univ., Houston, TX): the first BECs are formed in atom gases (${ }^{87} \mathrm{Rb},{ }^{23} \mathrm{Na},{ }^{7} \mathrm{Li}$).
- 2001: Nobel Prize (E. Cornell, C. Wieman and W. Ketterle); the work by Hulet et al. was "inconclusive" (Phys. World, Nov. 2001) ...

Today:
More than ~ 40 experimental groups, working on various alcali gases (Rb, Na , Li, K, H, Cs, Cr), and
more than ~ 500 theoretical articles on BECs every year!

BEC experiments: concept and realization - prerequisites

Low Temperature T :
De Broglie wavelength $\lambda_{\mathrm{dB}}=\mathrm{h} / \mathrm{mv} \propto \mathrm{T}^{-1 / 2}$ "Wave packets"

Experimentally BEC realization: "freezing" (parts of) boson gases;
Delow T_{c}, all of the atoms in the boson gas occupy the same quantum state (ground energy level);

A collective wave is formed: atomic wave functions oscillate in phase;

www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf

$\mathrm{T}=0$:
Pure Bose condensate
"Giant matter wave"

Theoretical prerequisites to BEC experiments.

\square Phase coherence is only due to quantum BE statistics, unlike in superfluidity or superconductivity (Cooper pairing, BCS etc.) where interactions play the major role.

- For an energy state density $\sim E^{1 / 2}$, the atoms N_{0} in a BEC formed at temperature T below the critical temperature T_{c} are given by

$$
N_{0}=N\left[1-\left(T / T_{c}\right)^{3}\right] .
$$

- Magnetic trap-imposed length scale a_{0} vs. Gaussian width $\left(T>T_{c}\right)$

$$
a_{0}=\left[\hbar /\left(m \omega_{\text {osc }}\right)\right]^{1 / 2}<R_{G}=\left[k T /\left(\hbar \omega_{\text {osc }}\right)\right]^{1 / 2} a_{0}
$$

$\left(\omega_{\text {osc }}=\left(\omega_{x} \omega_{y} \omega_{z}\right)^{1 / 3}\right.$: characteristic trapping potential frequency) unlike e.g. superfluid He (where inhomogeneity scale is fixed by interatomic spacing).
[F. Dalfovo et al., RMP 71, 463 (1999); A.J. Leggett, RMP 73, 307 (2001)].

Boson gas density vs. T : theory meets experiment

FIG. 4. Column density for 5000 noninteracting bosons in a spherical trap at temperature $T=0.9 T_{c}^{0}$. The central peak is the condensate, superimposed on the broader thermal distribution. Distance and density are in units of a_{bo} and a_{ho}^{-2}, respectively. The density is normalized to the number of atoms. The same curves can be identified with the momentum distribution of the condensed and noncondensed particles, provided the abscissa and the ordinate are replaced with p_{z}, in units of a_{ho}^{-1}, and the momentum distribution, in units of a_{ho}^{2}, respectively.

FIG. 3. Density distribution of 80000 sodium atoms in the trap of Hau et al. (1998) as a function of the axial coordinate. The experimental points correspond to the measured optical density, which is proportional to the column density of the atom cloud along the path of the light beam. The data agree well with the prediction of mean-field theory for interacting atoms (solid line) discussed in Sec. III. Conversely, a noninteracting gas in the same trap would have a much sharper Gaussian distribution (dashed line). The same normalization is used for the three density profiles. The central peak of the Gaussian is found at about $5500 \mu \mathrm{~m}^{-2}$. The figure points out the role of atom-atom interaction in reducing the central density and enlarging the size of the cloud.

The first (Boulder) BEC experiment (1995): concept \& procedure

[Anderson et al., Science, 269, 5221 (1995)]

- A ${ }^{87} \mathrm{Rb}$ source in vacuum ($10^{-6} \mathrm{mbar}$) is heated, so that atoms are "evaporated" at $v \sim 100 \mathrm{~cm} / \mathrm{s}$;
- Part of the atom flux is isolated and slowed down by a laser beam ${ }^{1}$, to a velocity as low as $v \sim \mathrm{~cm} / \mathrm{s} \quad$ (i.e. $T \sim \mu \mathrm{~K}$);
. Further cooling is achieved by magnetic trapping, down to 170 nK ;
A $10 \mu \mathrm{~m}$-sized BEC is thus formed, consisting of $\sim 2000 \mathrm{Rb}$ atoms.
The BEC was sustained for more than 15 seconds.

Laser cooling: cf. Nobel Prize 1997 awarded to Steven Chu, Claude Cohen-Tannoudji and William Phillips.

First BEC experiment (continued)

[Anderson et al., Science, 269, 5221 (1995)]

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman,* E. A. Cornell

A Bose-Einstein condensate was produced in a vapor of rubidium-87 atoms that was confined by magnetic fields and evaporatively cooled. The condensate fraction first appeared near a temperature of 170 nanokelvin and a number density of 2.5×10^{12} per cubic centimeter and could be preserved for more than 15 seconds. Three primary signatures of Bose-Einstein condensation were seen. (i) On top of a broad thermal velocity distribution, a narrow peak appeared that was centered at zero velocity. (ii) The fraction of the atoms that were in this low-velocity peak increased abruptly as the sample temperature was lowered. (iii) The peak exhibited a nonthermal, anisotropic velocity distribution expected of the minimum-energy quantum state of the magnetic trap in contrast to the isotropic, thermal velocity distribution observed in the broad uncondensed fraction.
tons were found to limit the achievable temperatures (8) and densities (9), so that the resulting value for ρ_{ps} was 10^{5} to 10^{6} times too low for BEC. We began to pursue BEC in an alkali vapor by using a hybrid approach to overcome these limitations (10, 11). This hybrid approach involves loading a laser-cooled and trapped sample into a magnetic trap where it is subsequently cooled by evaporation. This approach is particularly well suited to heavy alkali atoms because they are readily cooled and trapped with laser light, and the elastic scattering cross sections are very large (12), which facilitates evaporative cooling.

There are three other attractive features of alkali atoms for BEC. (i) By exciting the easily accessible resonance lines, one can use light scattering to sensitively character-

The Boulder experiment (rubidium gas, ${ }^{87}$ Rb) by Wiemann, Cornell et al.

[Anderson et al., Science, 269, 5221 (1995)]

FIG. 1. (Color) Images of the velocity distribution of rubidium atoms in the experiment by Anderson et al. (1995), taken by means of the expansion method. The left frame corresponds to a gas at a temperature just above condensation; the center frame, just after the appearance of the condensate; the right frame, after further evaporation leaves a sample of nearly pure condensate. The field of view is $200 \mu \mathrm{~m} \times 270 \mu \mathrm{~m}$, and corresponds to the distance the atoms have moved in about $1 / 20 \mathrm{~s}$. The color corresponds to the number of atoms at each velocity, with red being the fewest and white being the most. From Cornell (1996).

WWW.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf
New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

The MIT experiment (sodium gas, ${ }^{23} \mathrm{Na}$) by Ketterle et al.

[Davis et al., PRL, 75, 3969 (1995)] ; fig. from: Nobel lecture [Ketterle et al., RMP, 74, 1131 (2002)] ; cf. movie 1.

FIG. 7. Observation of Bose-Einstein condensation by absorption imaging. Shown is absorption vs two spatial dimensions. The Bose-Einstein condensate is characterized by its slow expansion observed after 6 ms time of flight. The left picture shows an expanding cloud cooled to just above the transition point; middle: just after the condensate appeared; right: after further evaporative cooling has left an almost pure condensate. The total number of atoms at the phase transition is about 7×10^{5}, the temperature at the transition point is $2 \mu \mathrm{~K}$ [Color].
2. BEC modelling: the Gross-Pitaevskii Equation (GPE)

Mean Field Theory for BE condensation \rightarrow Gross-Pitaevskii Eq. (GPE):

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V(\mathbf{r})+g|\psi|^{2}\right] \psi \tag{1}
\end{equation*}
$$

which takes into account:

- $-\frac{\hbar^{2}}{2 m} \nabla^{2} \equiv-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right):$ a kinetic term;
- $V(\mathbf{r})$: the trapping potential, e.g. $V(\mathbf{r})=\frac{1}{2} m\left(\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}+\omega_{z}^{2} z^{2}\right)$;
- $g|\psi|^{2}$: interatomic interactions, with $g=4 \pi \hbar^{2} a / m$; these may be either
- repulsive: $g>0 \quad(a>0$: positive scattering length); BEC stability or
- attractive: $g<0 \quad(a<0$: negative scattering length); BEC collapse.
www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf
New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

Scattering length: tuning via Feshbach resonance

The strength of atomic interactions varies strongly near a Feshbach resonance, at some specific value of an external magnetic field.

Thus, the scattering length may be controlled via external magnetic fields (experiments on ${ }^{23} \mathrm{Na}$ gases) [Inouye et al. (MIT + Ketterle), Nature 392, 153 (1998)]:

www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf
New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

Scattering length: sign inversion

2002: a negative scattering length is realized experimentally $(a<0), \ldots$
($\rightarrow g<0$: repulsive \rightarrow attractive interaction; focusing nonlinearity)
[Strecker et al. (Rice U. + Hulet), Nature 417, 150 (2002)]

Figure 1 Feshbach resonance. Calculation of the scattering length versus magnetc fiald for atoms in the $(1,1)$ state of ${ }^{7} U$ using the coupled channels method ${ }^{14}$. The field axis has been scaled here by a factor of 0.91 , to agree with the measured resonance positon of 725 G shown in Fig. 2. The scattering length is given in units of the Bohr radius, a_{o}.
www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf

Figure 2 Measured rate of inelastic collisional loss of atoms near the Feshbach resorance. The emperature is $\sim 1 \mu K$, which is above the transiton temperature for Bose-Einsteincondensaton. The intia peak density is estimated to be $\sim 6 \times 10^{12} \mathrm{~cm}^{-3}$. The rate of loss is given by the tme for the number of trapped atoms to fall to e^{-1} of the initial number. The magnetic field is determined spectrosoopically by measuring the frequency of the $(2,2) \rightarrow(1,1)$ transiton to within an uncertanty of 0.1 G .

New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

Scattering length: sign inversion

\rightarrow formation of bright soliton trains! [Strecker et al. (Rice U. + Hulet), Nature 417, 150 (2002)]

Formation and propagation of matter-wave soliton trains

Kevin E. Strecker*, Guthrie B. Partridge*, Andrew G. Truscott* \dagger
\& Randall G. Hulet*

* Department of Physics and Astronomy and Rice Quantum Institute, Rice University, Houston, Texas 77251, USA

Figure 4 Repulsive interactions between solitons. The three images show a solitn train near the two turning points and near the centre of oscillation. The spacing between solitns is compressed atthe turning points, and spread out at the centre of the oscillafion. A simple model based on strong, short-range, repulsive forces between nearestneighbour solitons indicates that the separation betveen solitons oscillates at approximately twice the trap frequency, in agreement with coservations. The number of
solitons varies from image to image because of shot to shot experimental variations, and because of a very slow loss of soliton signal with time. As the axial length of a soliton is expected to vary as $1 / N$ (ref. 11), solitons with small numbers of atoms produce paricularly weak absoption signals, scaling as N^{2}. Trains with missing solitons are frequently observed, but it is not clear whether this is because of a slow loss of atoms, or because of sudden loss of an individual soliton.
www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf

Scattering length: sign inversion bis: Paris - Texas: 1-0

2002 (one month earlier!): a similar experiment is carried out in Paris

 [Khaykovich et al. (ENS, Paris + Salomon), Science 296, 1290 (2002)]Formation of a Matter-Wave Bright Soliton
L. Khaykovich, ${ }^{1}$ F. Schreck, ${ }^{1}$ G. Ferrari, ${ }^{1,2}$ T. Bourdel, ${ }^{1}$
J. Cubizolles, ${ }^{1}$ L. D. Carr, ${ }^{1}$ Y. Castin, ${ }^{1}$ C. Salomon ${ }^{1 *}$

We report the production of matter-wave solitons in an ultracold lithium-7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 millimeter is observed. A simple theoretical model explains the stability region of the soliton. These matterwave solitons open possibilities for future applications in coherent atom optics, atom interferometry, and atom transport.

www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf

Fig. 2. Predicted magnetic field dependence of the scattering length a for ${ }^{7} L i$ in state $\mid F=1$, $\left.m_{F}=1\right\rangle$ (11). (Inset) Expanded view of the 0 to 0.6 kG interval with the various values of a used to study soliton formation. (\square) Initial BEC; (■) ideal BEC gas; (O) attractive gas; (\bullet) soliton.

Fig. 3. Absorption images at variable delays
after switching oft the atarer switching off the
vertical traping vericical rrapping beam.
Propagtion of an ideal Propagation of an ideal
$B E C$ gas (A) and of a soliton (B) in the horizontal 10 waveguide in the presence of an expulsive potential. Propagation without dispersion over 1.1 mm is a clear signature of a soliton. Corresponding axial profiles are integrated over the vertical direction.

New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

3. (Linear and) nonlinear excitation in BECs

Scattering length a tuning has boosted nonlinear analysis of BECs.

- A plethora of excitations have been predicted (and realized in appropriate designed experiments).

These include ...
(\rightarrow next slide)

Propagating linear oscillations (waves)

FIG. 2. (Color) Collective excitations of a Bose-Einstein condensate. Shown are in situ repeated phase-contrast images taken of a "pure" condensate. The excitations were produced by modulating the magnetic fields which confine the condensate, and then letting the condensate evolve freely. Both the center-of-mass and the shape oscillations are visible, and the ratio of their oscillation frequencies can be accurately measured. The field of view in the vertical direction is about $620 \mu \mathrm{~m}$, corresponding to a condensate width of the order of $200-300 \mu \mathrm{~m}$. The time step is 5 ms per frame. From Stamper-Kurn and Ketterle (1998).
reprinted from [F. Dalfovo et al., RMP 71, 463 (1999)]
www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf
New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

Bright soliton trains (for attractive interactions)

Figure 3 Comparison of the propagation of repulsive condensates with atomic solitons. The images are obtained using destructive absorption imaging, with a probe laser detuned 27 MHz from resonance. The magnetic field is reduced to the desired value before switching off the end caps (see text). The times given are the intervals between turning off the end caps and probing the end caps are on for the $t=0$ images). The axial dimension of each image frame corresponds to 1.28 mm at the plane of the atoms. The amplitude of
oscillation is $\sim 370 \mu \mathrm{~m}$ and the period is 310 ms . The $a>0$ data correspond to 630 G , for which $a \approx 10 a_{0}$, and the initial condensate number is $\sim 3 \times 10^{5}$. The $a<0$ data correspond to 547 G , for which $a \approx-3 a_{0}$. The largest solitin signals correspond to $\sim 5,000$ atms per soliton, although significant image distotion limits the precision of number measurement. The spatial resolution of $\sim 10 \mu \mathrm{~m}$ is signifcantly greater than the expected transverse dimension $/ \mathrm{r} \approx 1.5 \mu \mathrm{~m}$.
reprinted from [Strecker et al. (Rice U. + Hulet), Nature 417, 150 (2002)]
www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf
New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

Stable Dark solitons (for repulsive interactions) ...

i.e. void regions versus a finite density background:

Fig. 3. Experimental (\mathbf{A} to \mathbf{E}) and theoretical (\mathbf{F} to J) images of the integrated BEC density for various times after we imprinted a phase step of $\sim 1.5 \pi$ on the top half of the condensate with a $1-\mu \mathrm{s}$ pulse. The measured number of atoms in the condensate was $1.7(\pm 0.3) \times 10^{6}$, and this value was used in the calculations. A positive density disturbance moved rapidly in the $+x$ direction, and a dark soliton moved oppositely at significantly less than the speed of sound. Because the imaging pulse (27) is destructive, each image shows a different BEC. The width of each frame is $70 \mu \mathrm{~m}$.
reprinted from [Denschlag et al., Science 287, 97 (2000)]
www.tp4.rub.de/~ioannis/conf/2005-ICTP2-oral.pdf

Stable Dark soliton ensembles (interacting)

Fig. 5. (A) Plot of separation versus time for two oppositely propagating solitons after a phase imprint in the form of a stripe. For a small phase imprint ($\phi_{0}=0.5 \pi$, squares), the solitons move at almost the local speed of sound. For a larger phase imprint ($\phi_{0} \approx$ 1.5π, circles), they are much slower. The dashed lines are from numerical simulations, from which we extract

speeds for the corresponding solitons of $2.56 \mathrm{~mm} / \mathrm{s}\left(\phi_{0}=0.5 \pi\right)$ and $1.75 \mathrm{~mm} / \mathrm{s}\left(\phi_{0}=1.5 \pi\right)$ at 4 ms . (B) The condensate 6 ms after a stripe phase imprint of $\phi_{0} \approx 1.5 \pi$. (C) For a larger phase imprint of $\phi_{0} \approx 2 \pi$ many solitons appeared.
reprinted from [Denschlag et al., Science 287, 97 (2000)]

Stable Dark solitons decaying into vortices

sin

Watching Dark Solitons Decay into Vortex Rings in a Bose-Einstein Condensate
B. P. Anderson, ${ }^{1,2}$ P. C. Haljan, ${ }^{1}$ C. A. Regal, ${ }^{3}$ D. L. Feder, ${ }^{4}$ L. A. Collins,,${ }^{5}$ C. W. Clark, ${ }^{4}$ and E. A. Cornell ${ }^{1,2}$
${ }^{1}$ JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440
${ }^{2}$ Quantum Physics Division, National Institute of Standards and Technology, Boulder, Colorado 80305
${ }^{3}$ Physics Department, Lawrence University, P.O. Box 599, Appleton, Wisconsin 54912
${ }^{4}$ Electron and Optical Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8410
${ }^{5}$ Theoretical Division, Mail Stop B212, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 11 December 2000)

FIG. 1. Results of numerical simulations showing the decay of a black soliton in a BEC. The simulation corresponds to $3 \times$ $10^{5}{ }^{87} \mathrm{Rb}$ atoms in a spherically symmetric trap with frequency 7.8 Hz . Successive frames are shown at $50-\mathrm{ms}$ intervals, with the first frame at 100 ms after the start of the simulation. The first row shows the density profile of the condensate, integrated down an axis parallel to the soliton plane. The low-density regions within the cloud are also rendered (second row), with views perpendicular to the soliton plane.

FIG. 2. Typical images of expanded condensates, and their initial states (insets) before the $|2\rangle$ atoms were removed. (a) A vortex. (b)-(e) The decay products of solitons. Image (e) was taken with a hold time of 500 ms ; all other images were taken with a hold time of 0 ms , in addition to the $100 \mathrm{~ms}|2\rangle$ removal and the 56 -ms expansion [22].

Vortices \& vortex lattices

Observation of Vortex Lattices in Bose-Einstein Condensates

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, W. Ketterle

Quantized vortices play a key role in superfluidity and superconductivity. We have observed the formation of highly ordered vortex lattices in a rotating Bose-condensed gas. These triangular lattices contained over 100 vortices with lifetimes of several seconds. Individual vortices persisted up to 40 seconds. The lattices could be generated over a wide range of rotation frequencies and trap geometries, shedding light on the formation process. Our observation of dislocations, irregular structure, and dynamics indicates that gaseous Bose-Einstein condensates may be a model system for the study of vortex matter.

Fig. 1. Observation of vortex lattices. The examples shown contain approximately (A) 16, (B) 32, (C) 80 , and (D) 130 vortices. The vortices have "crystallized" in a triangular pattern. The diameter of the cloud in (D) was 1 mm after ballistic expansion, which represents a

magnification of 20.
Slight asymmetries in the density distribution were due to absorption of the optical pumping light.

Vortices \& vortex lattices (continued...)

 in the nomulned ty the moner of warices infarnd frem cen-

4. Coupled BECs: History and modelling

Coupling among BECs was considered and realized very early. Interference patterns were observed, motivating further investigation:

4. Coupled BECs: History and modelling

- Coupling among BECs was considered and realized very early.

A number of experiments were devoted to coupled boson gases, either of similar nature (symmetric BEC pairs) ... :

Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling

C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman JILA and Department of Physics, University of Colorado and NIST, Boulder, Colorado 80309
(Received 20 September 1996)

Abstract

A new apparatus featuring a double magneto-optic trap and an Ioffe-type magnetic trap was used to create condensates of 2×10^{6} atoms in either of the $|F=2, m=2\rangle$ or $|F=1, m=-1\rangle$ spin states of ${ }^{87} \mathrm{Rb}$. Overlapping condensates of the two states were also created using nearly lossless sympathetic cooling of one state via thermal contact with the other evaporatively cooled state. We observed that (i) the scattering length of the $|1,-1\rangle$ state is positive, (ii) the rate constant for binary inelastic collisions between the two states is $2.2(9) \times 10^{-14} \mathrm{~cm}^{3} / \mathrm{s}$, and (iii) there is a repulsive interaction between the two condensates. Similarities and differences between the behaviors of the two spin states are observed. [S0031-9007(96)02208-9]

4. Coupled BECs: History and modelling

Coupling among BECs was considered and realized very early.
A number of experiments were devoted to coupled boson gases, either of similar nature (symmetric BEC pairs)...

- ... or distinct ones (asymmetric BEC pairs), e.g. ${ }^{87} \mathrm{Rb}-{ }^{-23} \mathrm{Na},{ }^{87} \mathrm{Rb}-{ }^{85} \mathrm{Rb}$:

PHYSICAL REVIEW A, VOLUME 62, 043605
Atom loss and the formation of a molecular Bose-Einstein condensate by Feshbach resonance
V. A. Yurovsky and A. Ben-Reuven

School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel

Atomic Physics Division, Stop 8423, National Institute of Standards and Technology, Gaithersburg, Maryland 20889
(Received 25 May 2000; published 13 September 2000)
Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates
D. S. Hall, M. R. Matthews, J. R. Ensher, C.E. Wieman, and E. A. Cornell*

JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado,
Boulder, Colorado 80309-0440
(Received 2 April 1998)
from: Hall et al., PRL 81, 1539 (1998)

4. Coupled BECs: History and modelling

- Coupling among BECs was considered and realized very early.

A number of experiments were devoted to coupled boson gases, either of similar nature (symmetric BEC pairs) ...

- ... or distinct ones (asymmetric BEC pairs), e.g. ${ }^{87} \mathrm{Rb}-{ }^{23} \mathrm{Na},{ }^{87} \mathrm{Rb}-{ }^{85} \mathrm{Rb}$, or ...
- ... or, more recently, optical lattices (beyond the dilute, weakly interacting boson gas limit), i.e. chains consisting of N BECs, realized via appropriate magnetic traps.

4. Coupled BEC (cBEC) modelling (at the bottom of the trapping well) \rightarrow coupled Gross-Pitaevskii Eqs. (cGPE):

$$
\begin{aligned}
& i \hbar \frac{\partial \psi_{1}}{\partial t}+\frac{\hbar^{2}}{2 m_{1}} \nabla^{2} \psi_{1}-g_{11}\left|\psi_{1}\right|^{2} \psi_{1}-g_{12}\left|\psi_{2}\right|^{2} \psi_{1}+\mu_{1} \psi_{1}=0 \\
& i \hbar \frac{\partial \psi_{2}}{\partial t}+\frac{\hbar^{2}}{2 m_{2}} \nabla^{2} \psi_{2}-g_{22}\left|\psi_{2}\right|^{2} \psi_{2}-g_{21}\left|\psi_{1}\right|^{2} \psi_{2}+\mu_{2} \psi_{2}=0
\end{aligned}
$$

where $\nabla^{2} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ and
$\square g_{j j}=4 \pi \hbar^{2} a_{j j} / m_{j}(j=1,2)$ measure intra-BEC interatomic interactions: repulsive (attractive) for $g_{j j}>0\left(g_{j j}<0\right)$, i.e. $a_{j j}>0\left(a_{j j}<0\right)$;
$\square g_{j j^{\prime}}=2 \pi \hbar^{2} a_{j j} / m_{j j^{\prime}}\left(j \neq j^{\prime}=1,2\right)$ measure inter-BEC interactions, where $m_{j j^{\prime}}=m_{j} m_{j^{\prime}} /\left(m_{j}+m_{j^{\prime}}\right)$ is the reduced mass;

- μ_{j} are the chemical potentials, i.e. $\Phi_{j}=\psi_{j} \exp \left(-i \mu_{j} t / \hbar\right) \quad\left(\int d \mathbf{r} \psi_{j}^{2}=N_{j, 0}\right)$.

5. Stability analysis of cBECs

Material from [I. Kourakis, P. K. Shukla, M. Marklund, and L. Stenflo, Eur. Phys. J. B 46, 381 (2005)].
Let us consider harmonic cBEC vibrations in the form

$$
\psi_{j}=\psi_{j 0} \exp \left[i \varphi_{j}(t)\right]
$$

Substituting in the cGPE Eqs., we obtain $\varphi_{j}(t)=\Omega_{j 0} t$, with

$$
\Omega_{j 0}=-\frac{g_{j j}}{\hbar} \psi_{j 0}^{2}-\frac{g_{j j^{\prime}}}{\hbar} \psi_{j^{\prime} 0}^{2}+\mu_{j}, \quad \text { for } j \text { and } j^{\prime}(\neq j)=1 \text { and } 2 .
$$

We now assume a small external perturbation $\psi_{j 1}$ by setting

$$
\psi_{j} \rightarrow\left(\psi_{j 0}+\epsilon \psi_{j 1}\right) \exp \left[i \varphi_{j}(t)\right] \quad(\epsilon \ll 1),
$$

where $\psi_{j 1} \sim \exp \left[i\left(\mathbf{k} \cdot \mathbf{r}-\Omega_{k} t\right)\right]$; the perturbation wavenumber k and frequency Ω_{k} will be determined by the cGPE Eqs.

Perturbation dispersion relation

An eigenvalue problem is obtained, viz. $\mathrm{Ma}=(\hbar \omega)^{2} \mathrm{a}$, leading to

$$
\begin{equation*}
\left(\Omega_{k}^{2}-\Omega_{1}^{2}\right)\left(\Omega_{k}^{2}-\Omega_{2}^{2}\right)=\Omega_{c}^{4}, \tag{3}
\end{equation*}
$$

where:

- the individual BEC terms read: $M_{j j}=\frac{\hbar^{2} k^{2}}{2 m_{j}}\left(\frac{\hbar^{2} k^{2}}{2 m_{j}}+2 g_{j j}\left|\psi_{j 0}\right|^{2}\right) \equiv \hbar^{2} \Omega_{j}^{2}$;
the BEC coupling terms read: $M_{j j^{\prime}}=-2 \frac{\hbar^{2} k^{2}}{2 m_{j}} g_{j j^{\prime}}\left|\psi_{j 0} \| \psi_{j^{\prime} 0}\right| \equiv \hbar^{2} \Omega_{j j^{\prime}}^{2}$;
] the coupling is expressed via $\Omega_{c}^{4}=\Omega_{12}^{2} \Omega_{21}^{2} \equiv M_{12} M_{21} / \hbar^{4}$.
[INTERMEZZO: "switching off" the coupling:

$$
\Omega_{k}^{2}=M_{j j} / \hbar^{2}=\frac{k^{2}}{2 m_{j}}\left(\frac{\hbar^{2} k^{2}}{2 m_{j}}+2 g_{j j}\left|\psi_{j 0}\right|^{2}\right) \quad j=1 \text { or } 2 .
$$

www.tp4.rub. de/~ioannis/conf/2005-ICTP2-oral.pdf

INTERMEZZO: "switching off" the coupling:

$$
\Omega_{k}^{2}=M_{j j} / \hbar^{2}=\frac{k^{2}}{2 m_{j}}\left(\frac{\hbar^{2} k^{2}}{2 m_{j}}+2 g_{j j}\left|\psi_{j 0}\right|^{2}\right) \quad j=\text { either } 1 \text { or } 2 .
$$

- For $g_{j j}>0$ (repulsive interactions): $r h s>0$, hence stability;

For $g_{j j}<0$ (attractive interactions): rhs <0 for

$$
k<k_{c r} \equiv 2\left(m_{j} g_{j j}\right)^{1 / 2}\left|\psi_{j 0}\right| / \hbar,
$$

hence instability for large perturbation wavelengths \rightarrow collapse!

INTERMEZZO: "switching off" the coupling:

- Max. instability growth rate $\sigma_{\max }=g_{j j}\left|\psi_{j 0}\right|^{2} / \hbar \equiv \Omega_{0}$ occurs at $k=k_{c r} / \sqrt{2}$.

$$
\Omega_{j}^{2} / \Omega_{0}^{2} \text { vs. } k / k_{c r} \quad \sigma_{j} / \Omega_{0} \text { vs. } k / k_{c r}
$$

- This result is reminiscent of (yet not identical to) modulational (Benjamin-Feir) instability in nonlinear dispersive media, e.g. in optical media featuring a focusing nonlinearity; also in plasmas, water waves, etc.

(Stability analysis of) The coupled BEC system ...

The cBEC dispersion relation is satisfied by the (complex, in general) roots of a 4th order (biquadratic) polynomial in Ω (8th order in k), viz. $p(\Omega, k)=0$:

$$
\Omega_{k}^{2}=\frac{1}{2}\left(\Omega_{1}+\Omega_{2}\right)^{2} \pm \frac{1}{2}\left[\left(\Omega_{1}-\Omega_{2}\right)^{2}+4 \Omega_{c}^{4}\right]^{1 / 2}
$$

The analysis involves an enlarged parameter space $\left\{k ; g_{j j}, g_{j j^{\prime}}\right\}$.
The (lengthy!) investigation of the conditions for reality of Ω (hence stability) for an arbitrary (asymmetric, in principle) pair of boson gases (cBEC) yields:
(possibility for) an enlarged unstable wavenumber range;
(possibility for) an increased growth rate (in case of cBEC instability);
a modified value of Ω (in case of cBEC stability).

(Stability analysis of) The coupled BEC system ...

- An enlarged unstable wavenumber range is obtained, in addition to ...
an increased growth rate (in case of cBEC instability);

$$
\sigma_{j} / \Omega_{0,1} \& \sigma_{12} / \Omega_{0,1} \text { vs. } k / k_{1, c r}
$$

Stability criteria for coupled BECs

Stability is ensured if all of the following criteria are satisfied:

- Criterion 1:

$$
g_{11}>0 \quad \text { and } \quad g_{22}>0
$$

\rightarrow Instability if one (or more) BEC with attractive interactions is involved.

- Criterion 2:

$$
g_{11} g_{22}-g_{12} g_{21}>0
$$

\rightarrow Generalization of previous criterion: $\left|g_{12} / g_{11}\right|<1$, for symmetric cBECs.
\rightarrow Previous criterion (obtained via energetic arguments) extended.
[Stamper-Kurn, 1999; Modugno, Roati, 2002; Svidzinsky, 2003].

- Criterion 3:

$$
V_{12} V_{21}>0 .
$$

$\left(\rightarrow\right.$ Automatically satisfied since $V_{12}=V_{21}$, in principle.)

Conclusions

- BECs provide an excellent test-bed for nonlinear theories, related e.g. to the dynamics of localized excitations, in various dimensionalities (related to trapping geometry).

The actual realization of BECs requires sophisticated experimental techniques, but in turn offers the possibility for refined tuning of nonlinear parameters and design of purpose-built devices.

- On coupled BECs: one still needs to refine the theory, by taking into account the existence of an external magnetic trap, of variable size and geometry.

Further work on coupled BECs is on the way and will be reported shortly.

Thank you for your attention!

I.K.
www.tp4.rub.de/~ioannis

New Trends in Nonlinear Physics, ICTP, Trieste (17.09.2005)

