On some fundamental problems involved in the statistical-mechanical description of test-particle motion in a plasma

or

Derivation of a Fokker-Planck kinetic equation from first principles:
Application in magnetized plasma ${ }^{1, *}$
Ioannis KOURAKIS
Ruhr Universität Bochum, Theoretische Physik IV, Bochum, Germany email: ioannis@tp4.rub.de

[^0]
1 Introduction - theoretical framework

We are interested in the description of the dynamics of a large physical system of N particles $(j=1,2, \ldots, N)$, which interact:

- among themselves (\equiv collisions)
- with an external force field.

Application:

$$
\text { Plasma }=\text { large ensemble of charged particles }\left(e^{-}, i^{+}, \ldots\right)
$$

Particular features:

- long-range electrostatic interactions;
- presence of EM fields, Lorentz forces.

1.1 Statistical Mechanics - Review of notions

* Probability density (distribution function) ρ_{N}, in phase space $\Gamma_{N}=\left\{\mathbf{x}_{\mathbf{j}}, \mathbf{v}_{\mathbf{j}}\right\}$.
* Liouville Equation for N particles:

$$
\begin{equation*}
\frac{\partial \rho_{N}}{\partial t}=L_{N} \rho_{N} \tag{1}
\end{equation*}
$$

* General (formal) solution of the Liouville Equation:

$$
\begin{equation*}
\rho_{N}(t)=e^{L_{N}\left(t-t_{0}\right)} \rho_{N}\left(t_{0}\right) \tag{2}
\end{equation*}
$$

* $e^{L_{N}\left(t-t_{0}\right)}$: Time evolution operator ("Propagator"):
its exact knowledge is tantamount to the knowledge of the complete problem of motion (of N particles): impossible for $N=10^{23}$ particles!!!
* Kinetic evolution equation (for 1 particle, d.f.: $\quad \rho_{1}\left(\Gamma_{1}\right)=f$)

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\mathcal{T}\{f\} \tag{3}
\end{equation*}
$$

* \mathcal{T} : Kinetic evolution operator (to be determined for a given specific physical problem).

1.2 Kinetic equation (K.E.) - Collision term

General form:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}+m^{-1} \mathbf{F} \frac{\partial f}{\partial \mathbf{v}}=\mathcal{K}\{f\} \tag{4}
\end{equation*}
$$

* $f=f(\mathbf{x}, \mathbf{v} ; t)$.
$* \mathbf{F}=\mathbf{F}_{\text {ext }}+\mathbf{F}_{\text {int }}:$ external forces and mean-field forces (Vlasov).
* The collision operator \mathcal{K} should take into account the existence of an external field.
* $\mathbf{F}_{\text {int }}$ and \mathcal{K} express the mutual interactions between particles.

Some known collision terms (to be used with caution in Plasma Physics) include:

- Boltzmann: Not applicable for long-range (e.g. Coulomb) interactions.
- Vlasov: Contains no collision term (hence no irreversibility, no H-Theorem).
- Landau: Contains a collision term, but takes into account no external force field.
- Fokker-Planck: Phenomenological description of stochastic processes:

NO rigorous link to microscopic dynamics in the presence of the field.

Figure 1: Inter-particle interaction - notice the difference between
(a) Point-like interactions between charge-neutral particles (sphere-model) and
(b) long-range electrostatic interactions between charged particles.

Figure 2: Heuristic representation of the trajectory of colliding charges, in the presence of a magnetic field. Compare the typical interaction space scale (e.g. Debye radius r_{D}) to the typical Larmor gyration scale (Larmor radius ρ_{L}) in three cases:
(a) $\rho_{L} \gg r_{D}$, (b) $\rho_{L} \approx r_{D}$ kai (g) $\rho_{L} \ll r_{D}$.

1.3 Macroscopic description

* Observable quantity (macroscopic) $A(\mathbf{x} ; t)=$ mean value of a :

$$
A=\int d \mathbf{v} a f \equiv<a>_{\Gamma_{v}}
$$

where a : a function of microscopic variables $\left\{\mathbf{x}_{\mathbf{j}}, \mathbf{v}_{\mathbf{j}}\right\}$,
e.g. density $n=<1>_{\Gamma_{v}}$, velocity $\mathbf{u}=<\mathbf{v}>_{\Gamma_{v}}$, and so forth.

The evolution of A in time obeys a relation in the form:

$$
\frac{\partial A}{\partial t}=\frac{\partial}{\partial t} \int d \mathbf{v} a f=\int d \mathbf{v} \frac{\partial a}{\partial t} f \simeq \int d \mathbf{v} a \frac{\partial f}{\partial t}=\int d \mathbf{v} a \mathcal{T} f=\ldots
$$

$\rightarrow \quad$ Fluid-dynamical description of a Stat. Mechanical system
$\rightarrow \quad$ Magnetohydrodynamic (MHD) Plasma Theory
Ref. [R. Balescu, Statistical Mechanics (1975)] etc.

2 Model description - Test-particle formalism

Ingredients:

- a heat-bath (the "reservoir" R), in thermal equilibrium;
- a reference particle (the test-particle σ) ;
- an external field;
- Weak interaction between R kai σ.

Application 1: 3d plasma: N charged particles in a homogeneous \& static magnetic field

$$
\mathbf{B}=B \hat{z} .
$$

Application 2: a chain of N coupled harmonic oscillators, in 1d.
"Application 3": Free motion (vanishing field limit).

3 Hamiltonian function - Equations of motion

- Hamiltonian:

$$
\begin{equation*}
H=H_{R}+H_{\sigma}+\lambda H_{\text {int }} \tag{5}
\end{equation*}
$$

- H_{R} : Hamiltonian of the reservoir (N particles)

$$
\begin{equation*}
H_{R}=\sum_{j=1}^{N} H_{j}+\sum_{j<n} \sum_{n=1}^{N} V_{j n} \tag{6}
\end{equation*}
$$

- $H_{j}: 1$ particle term $(j=1,2, \ldots, N$ and $\sigma)$;
- $H_{\text {int }}$: interaction term (among the two subsystems):

$$
H_{i n t}=\sum_{n=1}^{N} V_{\sigma n}
$$

$-V_{i j} \equiv V\left(\left|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right|\right) \quad(i, j=1,2, \ldots, N, \sigma)$;
$-\lambda \ll 1$ (Weak interaction).

- Case study 1 (1d harmonic oscillators):

$$
H_{j}=\frac{1}{2} m_{j} v_{j}^{2}+\frac{1}{2} m_{j} \omega_{j}^{2} x_{j}^{2}
$$

- Case study 2 (magnetized plasma):

$$
H_{j}\left(\mathbf{x}_{\mathbf{j}}, \mathbf{p}_{\mathbf{j}}\right)=\frac{1}{2 m_{j}}\left|\mathbf{p}_{\mathbf{j}}-\frac{e_{j}}{c} \mathbf{A}\left(\mathbf{x}_{\mathbf{j}}\right)\right|^{2} \equiv \frac{1}{2} m_{j} v_{j}^{2}
$$

where $\mathbf{A}\left(\mathbf{x}_{\mathbf{j}}\right)$ is the vector potential, i.e.

$$
\mathbf{B}\left(\mathbf{x}_{\mathbf{j}}\right)=\nabla \times \mathbf{A}\left(\mathbf{x}_{\mathbf{j}}\right)
$$

[H. Goldstein, Classical Mechanics, 1980]etc.

- Case study 3 (free motion, no field):

$$
H_{j}=\frac{1}{2} m_{j} v_{j}^{2}
$$

3.1 Equations of motion

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{v} ; \quad \dot{\mathbf{v}}=\frac{1}{m}\left(\mathbf{F}_{\mathbf{0}}+\lambda \mathbf{F}_{\mathrm{int}}\right) \tag{7}
\end{equation*}
$$

$-\mathbf{x}=(x, y, z), \quad \mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)$.

- $\mathbf{F}_{\mathbf{0}}$: External force (due to the field)
e.g. Lorentz force: $\mathbf{F}_{\mathbf{L}}=\frac{e}{c}(\mathbf{v} \times \mathbf{B})$,
e.g. restoring (spring) force: $\mathbf{F}_{\mathbf{0}}=-m \omega_{0}^{2} x^{2}$,
$\mathbf{F}_{\mathbf{0}}=\mathbf{0}$, for a free particle,
and so forth ...
- $\mathrm{F}_{\mathrm{int}}$: interaction force

$$
\begin{equation*}
\mathbf{F}_{\mathrm{int}}=-\frac{\partial}{\partial \mathbf{x}} \sum V\left(\left|\mathbf{x}-\mathbf{x}_{\mathbf{j}}\right|\right) \tag{8}
\end{equation*}
$$

\rightarrow Collisions: Random, "stochastic" process!

3.2 Solution of the free (collisionless) problem of motion (for $\lambda=0$)

Plasma:

$$
\begin{gather*}
\mathbf{v}^{(0)}(t)=\mathbf{v}+\frac{1}{m} \int_{0}^{t} d t^{\prime} \mathbf{F}_{\mathbf{0}}\left(t^{\prime}\right)=\mathbf{R}(t) \mathbf{v} \\
\mathbf{x}^{(0)}(t)=\mathbf{x}+\int_{0}^{t} d t^{\prime} \mathbf{v}\left(t^{\prime}\right)=\mathbf{x}+\mathbf{N}(t) \mathbf{v} \tag{9}\\
\mathbf{N}^{\prime \alpha}(t)=\mathbf{R}^{\alpha}(t)=\left(\begin{array}{ccc}
\cos \Omega t & s \sin \Omega t & 0 \\
-s \sin \Omega t & \cos \Omega t & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gather*}
$$

and

$$
\begin{array}{r}
\mathbf{N}^{\alpha}(t)=\int_{0}^{t} d t^{\prime} \mathbf{R}^{\alpha}(t)=\Omega^{-1}\left(\begin{array}{ccc}
\sin \Omega t & s(1-\cos \Omega t) & 0 \\
s(\cos \Omega t-1) & \sin \Omega t & 0 \\
0 & 0 & \Omega t
\end{array}\right) \\
\Omega=\Omega_{\alpha}=\frac{\left|e_{\alpha}\right| B}{m_{\alpha} c},
\end{array}
$$

In the free motion limit: $\Omega \rightarrow 0, \quad \mathbf{N} \rightarrow t \mathbf{I}, \quad \mathbf{N}^{\prime} \rightarrow \mathbf{I}$.

- Harmonic oscillator (1d):
- Free motion:

$$
\left\{x_{i}(t), v_{i}(t)\right\}=\left\{x_{i}+v_{i} t, v_{i}\right\} \quad i=1,2,3
$$

- General solution for $\lambda=0$ (working hypothesis):

$$
\begin{align*}
& \mathbf{v}^{(0)}(t)=\mathbf{v}+\frac{1}{m} \int_{0}^{t} d t^{\prime} \mathbf{F}_{\mathbf{0}}\left(t^{\prime}\right)=\mathbf{M}^{\prime}(t) \mathbf{x}+\mathbf{N}^{\prime}(t) \mathbf{v} \\
& \mathbf{x}^{(0)}(t)=\mathbf{x}+\int_{0}^{t} d t^{\prime} \mathbf{v}\left(t^{\prime}\right)=\mathbf{M}(t) \mathbf{x}+\mathbf{N}(t) \mathbf{v} \tag{10}
\end{align*}
$$

4 Statistical description

Liouville Equation:

$$
\frac{\partial \rho}{\partial t}=L \rho=\left(L_{R}+L_{\sigma}+\lambda L_{i n t}\right) \rho
$$

The operators are defined as:

$$
\begin{equation*}
L_{R}=\sum_{n=1}^{N} L_{n}^{(0)}+\sum_{j<n} \sum_{n=1}^{N} L_{j n}, \quad L_{i n t}=\sum_{n=1}^{N} L_{\sigma n} \tag{11}
\end{equation*}
$$

- $L_{j}^{(0)}: 1$ particle Liouville operator in the presence of the field:

$$
\begin{equation*}
L_{j}^{(0)}=-\mathbf{v}_{j} \frac{\partial}{\partial \mathbf{x}_{j}}-\frac{1}{m_{j}} \mathbf{F}_{j}^{(0)} \frac{\partial}{\partial \mathbf{v}_{j}} \tag{12}
\end{equation*}
$$

$(j=1,2, \ldots, N$ and $\sigma)$,

- $L_{i j}$: mutual interaction term:

$$
\begin{equation*}
L_{i j}=\frac{\partial V\left(\left|\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right|\right)}{\partial \mathbf{x}_{\mathbf{i}}}\left(\frac{1}{m_{i}} \frac{\partial}{\partial \mathbf{v}_{\mathbf{i}}}-\frac{1}{m_{j}} \frac{\partial}{\partial \mathbf{v}_{\mathbf{j}}}\right) \tag{13}
\end{equation*}
$$

- The reservoir is in thermal equilibrium, i.e. $\partial_{t} \phi_{R}=L_{R} \phi_{R}=0 \quad\left(\phi_{R}=\phi_{\text {Maxwell }}\right)$.

4.1 Reduction of the Liouville Eq. - Perturbation theory - BBGKY hier-

 archy1. We define p-particle reduced distribution functions (rpdf) $f_{p}(p=1,2, \ldots, N)$, e.g.

$$
\begin{equation*}
f_{1}=\int d \Gamma_{R} \rho(\Gamma), \quad f_{2}=\int d \Gamma^{c_{1, \sigma}} \rho(\Gamma), \quad \ldots \tag{14}
\end{equation*}
$$

($\Gamma^{c_{1, \sigma}}=\Gamma-\left\{\Gamma_{1} \cup \Gamma_{\sigma}\right\}$, i.e. $\Gamma^{c_{\sigma}}=\Gamma-\Gamma_{\sigma}=\Gamma_{R}$, and so forth);
2. BBGKY hierarchy of equations for the rpdfs: integrating Eq. (1), we obtain a system of N coupled equations for f_{p};
3. We express the BBGKY hierarchy equations as a power series in λ;
4. Assuming that $\lambda \ll 1$, we keep only the lowest-order terms, up to λ^{2}, of the BBGKY hierarchy (truncation), and
5. we combine the first two members of the hierarchy, now decoupled from the rest, into a closed equation in terms of the rpdf $f=f_{1}$.

$$
\begin{align*}
\left(\frac{\partial}{\partial t}-L_{\sigma}^{(0)}\right) f^{\alpha} & =\lambda^{2} \sum_{\alpha^{\prime}} \int d^{3} \mathbf{x}_{\mathbf{1}} \int d^{3} \mathbf{v}_{\mathbf{1}} L_{I} g_{\alpha \alpha^{\prime}}+\mathcal{O}\left(\lambda^{3}\right) \\
\left(\frac{\partial}{\partial t}-L_{\sigma}^{(0)}-L_{1}^{(0)}\right) g_{\alpha \alpha^{\prime}} & =\lambda L_{I} \phi_{e q}^{\alpha^{\prime}} f^{\alpha}+\mathcal{O}\left(\lambda^{2}\right) \tag{15}
\end{align*}
$$

- $g=f_{2}^{\alpha \alpha^{\prime}}-\phi^{\alpha^{\prime}} f^{\alpha}$: correlation function.

4.2 Collision term - Master Equation

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-L_{\sigma}^{(0)}\right) f^{\alpha}=\mathcal{K}=\sum_{\alpha^{\prime}} n_{\alpha^{\prime}} \int_{0}^{t} d \tau \int d \mathbf{x}_{\mathbf{1}} \int d \mathbf{v}_{\mathbf{1}} L_{I} e^{L_{0} \tau} L_{I} \phi_{e q}^{\alpha^{\prime}}\left(\mathbf{v}_{\mathbf{1}}\right) f^{\alpha}(\mathbf{x}, \mathbf{v} ; t-\tau) \tag{16}
\end{equation*}
$$

Note the influence of:
(a) the interaction potential $V(r)$, through the operator $L_{I}=L_{1 \sigma}$,
(b) the external (e.g. magnetic) field, via the operator $e^{L_{0} \tau}=e^{L_{\sigma}^{(0)} \tau} e^{L_{1}^{(0)} \tau}$,
(c) the previous time history of the function $f(!)$: memory effect (non-Markovian Eq.).

5 A "pseudo-Markovian" approximation

- "Markovianization" hypothesis: $f(t-\tau) \approx e^{-L_{0} \tau} f(t) \&$ asymptotic limit: $t \rightarrow \infty$

$$
\begin{equation*}
\mathcal{K} \approx \sum_{\alpha^{\prime}} n_{\alpha^{\prime}} \int_{0}^{t \rightarrow \infty} d \tau \int d \mathbf{x}_{1} \int d \mathbf{v}_{\mathbf{1}} L_{I} e^{L_{0} \tau} L_{I} \phi_{e q}^{\alpha^{\prime}}\left(\mathbf{v}_{\mathbf{1}}\right) f^{\alpha}(t) \equiv \Theta\{f\} \tag{17}
\end{equation*}
$$

- Result: the PDE

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathrm{v} \frac{\partial f}{\partial \mathrm{x}}+\frac{1}{m} \mathbf{F}_{\text {ext }} \frac{\partial f}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}}\left[\mathbf{A}(\mathbf{v}) \frac{\partial}{\partial \mathbf{v}}+\mathrm{G}(\mathrm{v}) \frac{\partial}{\partial \mathrm{x}}+\frac{m}{m_{1}} \mathbf{a}(\mathbf{v})\right] f \tag{18}
\end{equation*}
$$

- for a spatially homogeneous plasma, i.e. $f=f(\mathbf{v} ; t)$, one obtains:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+m^{-1} \mathbf{F}^{(0)} \frac{\partial f}{\partial \mathbf{v}}=-\frac{\partial}{\partial v_{i}}\left(\mathcal{F}_{i}^{(V)} f\right)+\frac{\partial^{2}}{\partial v_{i} \partial v_{j}}\left(D_{i j} f\right) \tag{19}
\end{equation*}
$$

i.e. a Fokker-Planck (F.P.)-type diffusion equation;

- drift term:

$$
\begin{equation*}
\mathcal{F}_{i}^{(V)}=\left(1+\frac{m}{m_{1}}\right) \frac{\partial D_{i j}}{\partial v_{j}} \tag{20}
\end{equation*}
$$

$=$ Dynamical friction!

In $1 d$, hence $D, \mathcal{F} \in \Re$ (in the absence of a field)

$$
\frac{\partial f}{\partial t}=-\frac{\partial}{\partial v}(\mathcal{F} f)+\frac{\partial^{2}}{\partial v^{2}}(D f)
$$

5.1 Intermezzo: The Fokker-Planck eq. in the modelling of Brown motion

Basic form of the Fokker-Planck eq. (FPE) in 1d (in the absence of a force field)

$$
\begin{equation*}
\frac{\partial f}{\partial t}=\frac{\partial}{\partial v}(\eta v f)+D \frac{\partial^{2} f}{\partial v^{2}} f \tag{21}
\end{equation*}
$$

i.e.

$$
D=\eta \frac{k_{B} T}{m}=\text { const. } \quad \mathcal{F}=-\eta v
$$

$(\eta=$ const.$\in \Re)$.

- Cf. A. Einstein/P. Langevin (Brown motion), Kramers (phase space dynamics), S. Chandrasekhar in Astronomy, etc.

5.2 Fokker-Planck Eq. in 6d phase space $\Gamma=\{x, v\}$

$$
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}+\frac{1}{m} \mathbf{F}_{\mathbf{e x t}} \frac{\partial f}{\partial \mathbf{v}}=-\frac{\partial}{\partial q_{i}}\left(\mathcal{F}_{i} f\right)+\frac{\partial^{2}}{\partial q_{i} \partial q_{j}}\left(D_{i j} f\right) \equiv \Theta\{f\}
$$

-6×6 diffusion matrix $\mathbf{D}, 6 d$ friction vector:

$$
\mathbf{D}^{\Theta}(\mathbf{x}, \mathbf{v})=\left(\begin{array}{cc}
0 & \frac{1}{2} \mathbf{G}^{T} \\
\frac{1}{2} \mathbf{G} & \mathbf{A}
\end{array}\right) \quad \overrightarrow{\mathcal{F}}=\left(\mathbf{0}, \overrightarrow{\mathcal{F}}^{(V)}\right)^{T}
$$

5.3 Mathematical properties of the kinetic evolution operator - the positivity issue

The d.f. f should remain, at all times (under the action of a kinetic evolution operator)
(a) real $(f \in \Re)$, (b) normalized $(f f=1$), and (c) non negative $(f \geq 0)$ (def. semigroup); also: (d) (H-theorem) Monotonous convergence towards equilibrium.
\rightarrow Condition: Diffusion matrix positive definite: this criterion is not satisfied here!

6 An alternative approach: the Φ operator

- The quantum kinetic theory of open systems can "lend" us the operator:

$$
\begin{equation*}
\mathcal{A}_{t^{\prime}}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} d t^{\prime} U^{(0)}\left(-t^{\prime}\right) \cdot U^{(0)}\left(t^{\prime}\right) \tag{22}
\end{equation*}
$$

[E.B. Davies, One-Parameter Semigroups (1980); Davies (1974); Tzanakis (1988)]

- a Markovian operator: loss of the memory (non-locality) effect.
- (It has been proven that) the action of the Φ operator preserves the positivity of f !

7 Construction of the Φ operator for magnetized plasma

If $f=f(\mathbf{v} ; t)$ (homogeneous plasma):

$$
\begin{array}{r}
\frac{\partial f}{\partial t}+\frac{e}{m c}(\mathbf{v} \times \mathbf{B}) \frac{\partial f}{\partial \mathbf{v}}=\left[\left(\frac{\partial^{2}}{\partial v_{x}^{2}}+\frac{\partial^{2}}{\partial v_{y}^{2}}\right)\left[D_{\perp}(\mathbf{v}) f\right]+\frac{\partial^{2}}{\partial v_{z}^{2}}\left[D_{\|}(\mathbf{v}) f\right]\right. \\
-\frac{\partial}{\partial v_{x}}\left[\mathcal{F}_{x}(\mathbf{v}) f\right]-\frac{\partial}{\partial v_{y}}\left[\mathcal{F}_{y}(\mathbf{v}) f\right]-\frac{\partial}{\partial v_{z}}\left[\mathcal{F}_{z}(\mathbf{v}) f\right]
\end{array}
$$

7.1 General form of the Φ kinetic operator: non-uniform plasma

- If $f=f(\mathbf{x}, \mathbf{v} ; t)$:

$$
\begin{aligned}
& \frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}+\frac{e}{m c}(\mathbf{v} \times \mathbf{B}) \frac{\partial f}{\partial \mathbf{v}}=\left[\left(\frac{\partial^{2}}{\partial v_{x}^{2}}+\frac{\partial^{2}}{\partial v_{y}^{2}}\right)\left[D_{\perp}(\mathbf{v}) f\right]+\frac{\partial^{2}}{\partial v_{z}^{2}}\left[D_{\|}(\mathbf{v}) f\right]\right. \\
& +2 s \Omega^{-1}\left[\frac{\partial^{2}}{\partial v_{x} \partial y}-\frac{\partial^{2}}{\partial v_{y} \partial x}\right]\left[D_{\perp}(\mathbf{v}) f\right] \quad+\Omega^{-2} D_{\perp}^{(X X)}(\mathbf{v})\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f \\
& -\frac{\partial}{\partial v_{x}}\left[\mathcal{F}_{x}(\mathbf{v}) f\right]-\frac{\partial}{\partial v_{y}}\left[\mathcal{F}_{y}(\mathbf{v}) f\right]-\frac{\partial}{\partial v_{z}}\left[\mathcal{F}_{z}(\mathbf{v}) f\right] \\
& +s \Omega^{-1} \mathcal{F}_{y}(\mathbf{v}) \frac{\partial}{\partial x} f-s \Omega^{-1} \mathcal{F}_{x}(\mathbf{v}) \frac{\partial}{\partial y} f
\end{aligned}
$$

- Terms in $\partial^{2} / \partial z \partial v_{z}, \partial^{2} / \partial z^{2}$ have been omitted.
- New diffusion term $\perp \mathbf{B}$, new diffusion $X-V$ - term $\left(\sim \partial^{2} f / \partial v_{i} \partial v_{j}\right)$.

8 Coefficients in the FPE - relation to microscopic dynamics

8.1 General form

$$
\begin{align*}
\left\{\begin{array}{l}
\mathbf{A}(\mathbf{x}, \mathbf{v}) \\
\mathbf{G}(\mathbf{x}, \mathbf{v})
\end{array}\right\} & =\frac{n}{m^{2}} \int_{0}^{t \rightarrow \infty} d \tau \int d \mathbf{x}_{\mathbf{1}} \int d \mathbf{v}_{\mathbf{1}} \phi_{e q}\left(\mathbf{v}_{\mathbf{1}}\right) \\
& \mathbf{F}_{\mathrm{int}}\left(\left|\mathbf{x}-\mathbf{x}_{\mathbf{1}}\right|\right) \otimes \mathbf{F}_{\mathrm{int}}\left(\left|\mathbf{x}(-\tau)-\mathbf{x}_{\mathbf{1}}(-\tau)\right|\right)\left\{\begin{array}{c}
\mathbf{N}^{T}(\tau) \\
\mathbf{N}^{T}(\tau)
\end{array}\right\} \\
= & \frac{n}{m^{2}} \int_{0}^{\infty} d \tau \mathbf{C}(\mathbf{x}, \mathbf{v} ; t, t-\tau)\left\{\begin{array}{c}
\mathbf{N}^{\prime T}(\tau) \\
\mathbf{N}^{\mathbf{T}}(\tau)
\end{array}\right\} \tag{23}
\end{align*}
$$

- Friction vector:

$$
\begin{equation*}
F_{i}=\left(1+\frac{m}{m_{1}}\right) \frac{\partial D_{i j}}{\partial v_{j}} \tag{24}
\end{equation*}
$$

- Time correlation functions $C_{i j}(\tau)$ for the interaction forces (Kubo coefficients).

8.2 Exact form of the diffusion coefficients for magnetized plasma

Working hypotheses: (i) R in a Maxwellian state; (ii) Debye type interaction potential $V(r)$:
$\left\{\left\{\begin{array}{c}D_{\perp} \\ D_{L} \\ D_{\perp}^{(X X)} \\ D_{\|}\end{array}\right\}\right\}=D_{0} \Lambda \int_{0}^{t} d \tau^{\prime} \int_{1}^{x_{\max }} d x e^{\Lambda^{2}\left(1-x^{2}\right) \sin ^{2} \frac{\tau^{\prime}}{2}}\left(1-\frac{1}{x^{2}}\right)^{\{1,0\}} e^{-\tilde{v}_{\|}^{2}}$

$$
J_{O}\left(2 \Lambda \sqrt{x^{2}-1} \tilde{v}_{\perp} \sin \frac{\tau^{\prime}}{2}\right) \tilde{F}_{\{\perp, \|\}}\left\{\left\{\begin{array}{c}
\frac{1}{2} \cos \tau^{\prime} \\
\left(-s^{\alpha}\right) \frac{1}{2} \sin \tau^{\prime} \\
\left(1+\frac{1}{2} \cos \tau^{\prime}\right)
\end{array}\right\}\right\}
$$

where

$$
x \equiv \frac{\tilde{k}_{\perp}}{k_{D}}=\left(1+\frac{k_{\perp}^{2}}{k_{D}^{2}}\right)^{1 / 2}, \quad \quad \tau^{\prime}=\Omega \tau, \quad D_{0} \equiv \frac{2 \sqrt{2} n e^{4}}{m^{2} \sqrt{k_{B} T}}
$$

(Spitzer plasma collision frequency).

- The functions $\tilde{F}=\tilde{F}\left(\phi\left(x, \tau^{\prime}\right), \tilde{v}_{\|}\right)$are given by:

$$
\tilde{F}_{\{\perp, \|\}}^{\alpha^{\prime}}= \pm \sqrt{\pi} \phi+\frac{\pi}{4} \sum_{s=+1,-1}\left[\left(1 \mp 2 \phi^{2} \mp s 2 \phi \tilde{v}_{\|}\right) e^{\left(\phi+s \tilde{v}_{\|}\right)^{2}} \operatorname{Erfc}\left(\phi+s \tilde{v}_{\|}\right)\right]
$$

where

$$
\begin{gathered}
\phi=\frac{1}{2} \Lambda \tau^{\prime} x, \quad \Lambda=\sqrt{2} \frac{\omega_{p}}{\Omega}, \quad \tilde{v}_{*}=\left(\frac{m v_{*}^{2}}{2 k_{B} T}\right)^{1 / 2}, \quad * \in\{\perp, \|\} \\
k_{D}=\left(\frac{4 \pi e_{\alpha}^{2} n_{\alpha}}{k_{B} T_{\alpha}}\right)^{1 / 2} \quad \omega_{p, \alpha}=\left(\frac{4 \pi e_{\alpha}^{2} n_{\alpha}}{m_{\alpha}}\right)^{1 / 2} \\
\operatorname{Erfc}(x)=1-\operatorname{Erf}(x) \equiv 1-\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\end{gathered}
$$

9 Diffusion coefficients: a parametric study

Considering an electron plasma characterized by

- a temperature $T=10 \mathrm{KeV}$,
- density $n=10^{14} \mathrm{~cm}^{-3}=10^{20} \mathrm{~m}^{-3}$,
- plasma frequency $\omega_{p, e}=5.64 \cdot 10^{11} \mathrm{~s}^{-1}$, and
- cyclotron frequency $\Omega_{e}=1.7610^{11} \times B \quad s^{-1}(B$ in Tesla),
we have studied
the correlation function $C_{\perp}(\tau)$ vs. time τ, and the coefficients $D_{\perp, \|}$ vs. the test-particle velocity.

Figure 3: The transverse element of the interaction correlation function $C_{\perp}\left(\tau ; v_{\perp}, v_{\|}, B\right)$ vs. time τ (in gyration periods $\left.T_{c}=2 \pi / \Omega\right)$, for different values of $B(\sim \Omega)$. We have considered as typical values $v_{\perp}=v_{\|}=v_{t h}=(T / m)^{1 / 2}$. Notice the peaks (attenuated) at every period.

- Field dependence.
- Space confinement due to the field - particles stick to their helicoidal trajectories.
- Velocity dependence.

Figure 4: (a) The transverse diffusion coefficient D_{\perp} and (b) the friction vector (norm) \mathcal{F}_{\perp} (normalized) vs. the test-particle velocity v_{\perp} (\perp field) (scaled by the sound velocity) for a magnetized electrostatic plasma. All coefficients increase with the field.

Figure 5: The transverse diffusion coefficient D_{\perp} vs. the dimensionless parameter Λ ($\sim 1 / \Omega$ - see def. above). The asymptotic value (dashed line) corresponds to the limit $\Lambda \rightarrow \infty$, i.e un-magnetized plasma $(\Lambda \rightarrow \infty$ implies $\Omega \rightarrow 0)$. In (c), we have focused in the region near $\Lambda \approx 1$. We have taken $v_{\perp}=v_{\|}=v_{t h}=(T / m)^{1 / 2}$. The different curves in (a) correspond to different values of the upper time integration limit t - cf. p. 23 above.

- for $\Lambda \gg 1$ (weak field): the Landau description is sufficient (for $\Omega \rightarrow 0$).
- near $\Lambda \approx 1$ (important field, $\Omega \approx \omega_{p}$): strong field dependence of the collision term!

10 Conclusions

- Relying on first principles of Non-Equilibrium Statistical Mechanics, we have presented a method for the description of the (macroscopic) behavior of large (N particle) systems, as results from the microscopic laws of motion.
- We have focused on:

1. the space dependence of the d.f, and
2. the dependence of the collision term on the external field.

- We have shown that a widely adopted "Markovianization" hypothesis (the Θ operator) leads to erroneous (physically unacceptable) results.
- By adopting an alternative markovianization approach (the Φ operator), we have succeeded in deriving a correct FP-type kinetic equation for a t.p. in magnetized plasma.
- A numerical investigation has shown a strong dependence of \mathcal{K} on the magnetic field.

References

[1] L.D. Landau \& E. M. Lifshitz, 1982, Statistical Physics, Part 1, Pergamon Press; عríøns: R. Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, 1975.
[2] R. Balescu, Transport Processes in Plasmas, V. 1, Classical Transport, N. Holland, A'dam, 1988.
[3] H.Goldstein, Classical Mechanics, 1980, Addison-Wesley.
[4] I. Kourakis, PhD thesis, U.L.B., Brussels, 2002.
[5] R. Balescu, Statistical Mechanics of Charged Particles, Wiley, 1963.
[6] C.W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag 1985.
[7] See the works by: G. E. Uhlenbeck \& L. S. Ornstein (1930) and S. Chandrasekhar (1943); both are reprinted in: N. Wax, 1954, Noise and Stochastic Processes, Dover, New York.
[8] E. B. Davies, 1980, One-Parameter Semigroups, Academic Press, London.
[9] A.P.Grecos, C.Tzanakis, Physica A 151 (1988).
[10] I.Kourakis, Plasma Phys.Control.Fusion 41587 (1999);
"Derivation and properties for a kinetic equation for a charged particle interacting with a magnetized plasma", A.Grecos \& I.Kourakis (in preparation).
[11] I. Kourakis, D. Carati \& B. Weyssow, Proceedings of the 2000 ICPP Conference (Québec, Canada), pp. 49-53.

[^0]: ${ }^{1}$ In collaboration with A. Grecos, Univ. Thessaly, Euratom - Hellenic Republic Association, Greece, and L. Brenig, D. Carati \& B. Weyssow, U.L.B., Euratom-Belgian State Assoc., Brussels, Belgium.

 * I. Kourakis, ICTP, Trieste, 09.09.2005 (www.tp4.rub.de/~ioannis/conf/200509-ICTP3-oral.pdf)

