On some fundamental problems involved in the statistical-mechanical description of test-particle motion in a plasma

or

Derivation of a Fokker-Planck kinetic equation from first principles:

Application in magnetized plasma ^{1,*}

Ioannis KOURAKIS

Ruhr Universität Bochum, Theoretische Physik IV, Bochum, Germany

email: ioannis@tp4.rub.de

¹ In collaboration with **A. Grecos**, Univ. Thessaly, Euratom - Hellenic Republic Association, Greece,

and L. Brenig, D. Carati & B. Weyssow, U.L.B., Euratom-Belgian State Assoc., Brussels, Belgium.

^{*} I. Kourakis, ICTP, Trieste, 09.09.2005 (www.tp4.rub.de/ \sim ioannis/conf/200509-ICTP3-oral.pdf)

1 Introduction – theoretical framework

We are interested in the description of the dynamics of a large physical system of N particles (j = 1, 2, ..., N), which interact:

- among themselves ($\equiv collisions$)
- with an external force field.

Application:

Plasma = large ensemble of charged particles $(e^-, i^+, ...)$

Particular features:

- long-range electrostatic interactions;
- presence of EM fields, *Lorentz forces*.

1.1 Statistical Mechanics - Review of notions

* Probability density (*distribution function*) ρ_N , in *phase space* $\Gamma_N = \{\mathbf{x_j}, \mathbf{v_j}\}$.

* Liouville Equation for N particles:

$$\frac{\partial \rho_N}{\partial t} = L_N \, \rho_N \tag{1}$$

* General (formal) solution of the Liouville Equation:

$$\rho_N(t) = e^{L_N(t - t_0)} \, \rho_N(t_0) \tag{2}$$

* $e^{L_N(t-t_0)}$: Time evolution operator ("Propagator"):

its exact knowledge is tantamount to the knowledge of the complete problem of motion (of N particles): impossible for $N=10^{23}$ particles!!!

* Kinetic evolution equation (for 1 particle, d.f.: $\rho_1(\Gamma_1) = f$)

$$\frac{\partial f}{\partial t} = \mathcal{T}\{f\} \tag{3}$$

* \mathcal{T} : Kinetic evolution operator (to be determined for a given specific physical problem).

1.2 Kinetic equation (K.E.) - Collision term

General form:

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} + m^{-1} \mathbf{F} \frac{\partial f}{\partial \mathbf{v}} = \mathcal{K} \{ f \}$$
 (4)

* $f = f(\mathbf{x}, \mathbf{v}; t)$.

* $\mathbf{F} = \mathbf{F}_{ext} + \mathbf{F}_{int}$: external forces and mean-field forces (Vlasov).

* The collision operator K should take into account the existence of an external field.

* \mathbf{F}_{int} and \mathcal{K} express the mutual interactions between particles.

Some *known collision terms* (to be used with caution in Plasma Physics) include:

- Boltzmann: Not applicable for long-range (e.g. Coulomb) interactions.
- VLASOV: Contains no collision term (hence no irreversibility, no H-Theorem).
- Landau: Contains a collision term, but takes into account no external force field.
- Fokker-Planck: Phenomenological description of stochastic processes:

NO rigorous link to microscopic dynamics in the presence of the field.

Figure 1: Inter-particle interaction — notice the difference between

- (a) Point-like interactions between charge-neutral particles (sphere-model) and
- (b) long-range electrostatic interactions between charged particles.

Figure 2: Heuristic representation of the trajectory of colliding charges, in the presence of a magnetic field. Compare the typical interaction space scale (e.g. Debye radius r_D) to the typical Larmor gyration scale (Larmor radius ρ_L) in three cases:

(a)
$$\rho_L \gg r_D$$
, (b) $\rho_L \approx r_D$ kai (g) $\rho_L \ll r_D$.

1.3 Macroscopic description

* Observable quantity (macroscopic) $A(\mathbf{x};t)$ = mean value of a:

$$A = \int d\mathbf{v} \, a \, f \equiv \langle a \rangle_{\Gamma_v}$$

where a: a function of microscopic variables $\{\mathbf{x_j}, \mathbf{v_j}\}$,

e.g. density $n = <1>_{\Gamma_v}$, velocity $\mathbf{u} = <\mathbf{v}>_{\Gamma_v}$, and so forth.

The evolution of A in time obeys a relation in the form:

$$\frac{\partial A}{\partial t} = \frac{\partial}{\partial t} \int d\mathbf{v} \, af = \int d\mathbf{v} \, \frac{\partial a}{\partial t} f \simeq \int d\mathbf{v} \, a \, \frac{\partial f}{\partial t} = \int d\mathbf{v} \, a \, \mathcal{T} f = \dots$$

 \rightarrow Fluid-dynamical description of a Stat. Mechanical system

 \rightarrow Magnetohydrodynamic (MHD) Plasma Theory

Ref. [R. Balescu, Statistical Mechanics (1975)] etc.

2 Model description – Test-particle formalism

Ingredients:

- a heat-bath (the "reservoir" R), in thermal equilibrium;
- a reference particle (the test-particle σ);
- an external field;
- Weak interaction between R kai σ .

Application 1: 3d plasma: N charged particles in a homogeneous & static magnetic field

$$\mathbf{B} = B \,\hat{z}$$
.

Application 2: a chain of N coupled harmonic oscillators, in 1d.

"Application 3": Free motion (vanishing field limit).

3 Hamiltonian function – Equations of motion

- Hamiltonian:

$$H = H_R + H_\sigma + \lambda H_{int} \tag{5}$$

- H_R : Hamiltonian of the reservoir (N particles)

$$H_R = \sum_{j=1}^{N} H_j + \sum_{j < n} \sum_{n=1}^{N} V_{jn}$$
 (6)

- H_j : 1 particle term $(j = 1, 2, ..., N \ and \ \sigma)$;
- H_{int} : interaction term (among the two subsystems):

$$H_{int} = \sum_{n=1}^{N} V_{\sigma n}$$

- $V_{ij} \equiv V(|\mathbf{x_i} \mathbf{x_j}|)$ $(i, j = 1, 2, ..., N, \sigma);$
- $\lambda \ll 1$ (Weak interaction).

• Case study 1 (1d harmonic oscillators):

$$H_j = \frac{1}{2}m_j v_j^2 + \frac{1}{2}m_j \omega_j^2 x_j^2$$

• Case study 2 (magnetized plasma):

$$H_j(\mathbf{x_j}, \mathbf{p_j}) = \frac{1}{2m_j} |\mathbf{p_j} - \frac{e_j}{c} \mathbf{A}(\mathbf{x_j})|^2 \equiv \frac{1}{2} m_j v_j^2$$

where $\mathbf{A}(\mathbf{x_i})$ is the vector potential, i.e.

$$\mathbf{B}(\mathbf{x_j}) = \nabla \times \mathbf{A}(\mathbf{x_j})$$

[H. Goldstein, Classical Mechanics, 1980]etc.

• Case study 3 (free motion, no field):

$$H_j = \frac{1}{2} m_j v_j^2 \,.$$

3.1 Equations of motion

$$\dot{\mathbf{x}} = \mathbf{v} \; ; \qquad \dot{\mathbf{v}} = \frac{1}{m} \left(\mathbf{F_0} + \frac{\lambda}{\mathbf{F_{int}}} \right)$$
 (7)

- $-\mathbf{x} = (x, y, z), \quad \mathbf{v} = (v_x, v_y, v_z).$
- $\mathbf{F_0}$: External force (due to the field)
 - e.g. Lorentz force: $\mathbf{F}_{\mathbf{L}} = \frac{e}{c}(\mathbf{v} \times \mathbf{B}),$
 - e.g. restoring (spring) force: $\mathbf{F_0} = -m\omega_0^2 x^2$,
 - $\mathbf{F_0} = \mathbf{0}$, for a free particle,

and so forth \dots

- $\mathbf{F_{int}}$: interaction force

$$\mathbf{F_{int}} = -\frac{\partial}{\partial \mathbf{x}} \sum V(|\mathbf{x} - \mathbf{x_j}|)$$
 (8)

 \rightarrow Collisions: Random, "stochastic" process!

3.2 Solution of the free (collisionless) problem of motion (for $\lambda = 0$)

Plasma:

$$\mathbf{v}^{(0)}(t) = \mathbf{v} + \frac{1}{m} \int_0^t dt' \, \mathbf{F_0}(t') = \mathbf{R}(t) \, \mathbf{v}$$

$$\mathbf{x}^{(0)}(t) = \mathbf{x} + \int_0^t dt' \, \mathbf{v}(t') = \mathbf{x} + \mathbf{N}(t) \, \mathbf{v}$$

$$\mathbf{N}'^{\alpha}(t) = \mathbf{R}^{\alpha}(t) = \begin{pmatrix} \cos \Omega t & s \sin \Omega t & 0 \\ -s \sin \Omega t & \cos \Omega t & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(9)

and

$$\mathbf{N}^{\alpha}(t) = \int_{0}^{t} dt' \, \mathbf{R}^{\alpha}(t) = \Omega^{-1} \begin{pmatrix} \sin \Omega t & s \, (1 - \cos \Omega t) & 0 \\ s \, (\cos \Omega t - 1) & \sin \Omega t & 0 \\ 0 & 0 & \Omega t \end{pmatrix}$$
$$\Omega = \Omega_{\alpha} = \frac{|e_{\alpha}|B}{m_{\alpha}c}, \qquad s = s_{\alpha} = \frac{e_{\alpha}}{|e_{\alpha}|} = \pm 1$$

In the free motion limit: $\Omega \to 0$, $\mathbf{N} \to t \mathbf{I}$, $\mathbf{N}' \to \mathbf{I}$.

- Harmonic oscillator (1d):

. . .

- Free motion:

$$\{x_i(t), v_i(t)\} = \{x_i + v_i t, v_i\}$$
 $i = 1, 2, 3$

- General solution for $\lambda = 0$ (working hypothesis):

$$\mathbf{v}^{(0)}(t) = \mathbf{v} + \frac{1}{m} \int_0^t dt' \, \mathbf{F_0}(t') = \mathbf{M}'(t) \, \mathbf{x} + \mathbf{N}'(t) \, \mathbf{v}$$

$$\mathbf{x}^{(0)}(t) = \mathbf{x} + \int_0^t dt' \, \mathbf{v}(t') = \mathbf{M}(t) \, \mathbf{x} + \mathbf{N}(t) \, \mathbf{v}$$
(10)

4 Statistical description

Liouville Equation:

$$\frac{\partial \rho}{\partial t} = L \, \rho \, = \left(L_R + L_\sigma + \lambda \, L_{int} \right)
ho$$

The operators are defined as:

$$L_R = \sum_{n=1}^{N} L_n^{(0)} + \sum_{j < n} \sum_{n=1}^{N} L_{jn}, \qquad L_{int} = \sum_{n=1}^{N} L_{\sigma n}$$
 (11)

- $L_j^{(0)}$: 1 particle Liouville operator in the presence of the field:

$$L_j^{(0)} = -\mathbf{v}_j \frac{\partial}{\partial \mathbf{x}_j} - \frac{1}{m_j} \mathbf{F}_j^{(0)} \frac{\partial}{\partial \mathbf{v}_j}$$
 (12)

 $(j = 1, 2, ..., N \text{ and } \sigma),$

- L_{ij} : mutual interaction term:

$$L_{ij} = \frac{\partial V(|\mathbf{x_i} - \mathbf{x_j}|)}{\partial \mathbf{x_i}} \left(\frac{1}{m_i} \frac{\partial}{\partial \mathbf{v_i}} - \frac{1}{m_j} \frac{\partial}{\partial \mathbf{v_j}} \right)$$
(13)

- The reservoir is in thermal equilibrium, i.e. $\partial_t \phi_R = L_R \phi_R = 0$ $(\phi_R = \phi_{Maxwell})$.

4.1 Reduction of the Liouville Eq. – Perturbation theory – BBGKY hierarchy

1. We define p-particle reduced distribution functions (rpdf) f_p (p = 1, 2, ..., N), e.g.

$$f_1 = \int d\Gamma_R \, \rho(\Gamma) \,, \qquad f_2 = \int d\Gamma^{c_{1,\sigma}} \, \rho(\Gamma) \,, \qquad \dots$$
 (14)

$$(\Gamma^{c_{1,\sigma}} = \Gamma - \{\Gamma_1 \cup \Gamma_\sigma\}, \text{ i.e. } \Gamma^{c_\sigma} = \Gamma - \Gamma_\sigma = \Gamma_R, \text{ and so forth});$$

- 2. BBGKY hierarchy of equations for the rpdfs: integrating Eq. (1), we obtain a system of N coupled equations for f_p ;
- 3. We express the BBGKY hierarchy equations as a power series in λ ;
- 4. Assuming that $\lambda \ll 1$, we keep only the lowest-order terms, up to λ^2 , of the BBGKY hierarchy (truncation), and
- 5. we combine the first two members of the hierarchy, now decoupled from the rest, into a closed equation in terms of the rpdf $f = f_1$.

$$\left(\frac{\partial}{\partial t} - L_{\sigma}^{(0)}\right) f^{\alpha} = \lambda^{2} \sum_{\alpha'} \int d^{3}\mathbf{x}_{1} \int d^{3}\mathbf{v}_{1} L_{I} g_{\alpha\alpha'} + \mathcal{O}(\lambda^{3})$$

$$\left(\frac{\partial}{\partial t} - L_{\sigma}^{(0)} - L_{1}^{(0)}\right) g_{\alpha\alpha'} = \lambda L_{I} \phi_{eq}^{\alpha'} f^{\alpha} + \mathcal{O}(\lambda^{2})$$
(15)

- $g = f_2^{\alpha \alpha'} - \phi^{\alpha'} f^{\alpha}$: correlation function.

4.2 Collision term - Master Equation

$$\left(\frac{\partial}{\partial t} - L_{\sigma}^{(0)}\right) f^{\alpha} = \mathcal{K} = \sum_{\alpha'} n_{\alpha'} \int_0^t d\tau \int d\mathbf{x_1} \int d\mathbf{v_1} L_I e^{L_0 \tau} L_I \phi_{eq}^{\alpha'}(\mathbf{v_1}) f^{\alpha}(\mathbf{x}, \mathbf{v}; t - \tau) \quad (16)$$

Note the influence of:

- (a) the interaction potential V(r), through the operator $L_I = L_{1\sigma}$,
- (b) the external (e.g. magnetic) field, via the operator $e^{L_0\tau} = e^{L_{\sigma}^{(0)}\tau} e^{L_1^{(0)}\tau}$,
- (c) the previous $time\ history$ of the function f (!): memory effect $(non-Markovian\ Eq.)$.

5 A "pseudo-Markovian" approximation

— "Markovianization" hypothesis: $f(t-\tau) \approx e^{-L_0 \tau} f(t)$ & asymptotic limit: $t \to \infty$

$$\mathcal{K} \approx \sum_{\alpha'} n_{\alpha'} \int_0^{t \to \infty} d\tau \int d\mathbf{x_1} \int d\mathbf{v_1} L_I e^{L_0 \tau} L_I \phi_{eq}^{\alpha'}(\mathbf{v_1}) f^{\alpha}(t) \equiv \Theta\{f\}$$
 (17)

— Result: the PDE

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} + \frac{1}{m} \mathbf{F}_{\mathbf{ext}} \frac{\partial f}{\partial \mathbf{v}} = \frac{\partial}{\partial \mathbf{v}} \left[\mathbf{A}(\mathbf{v}) \frac{\partial}{\partial \mathbf{v}} + \mathbf{G}(\mathbf{v}) \frac{\partial}{\partial \mathbf{x}} + \frac{m}{m_1} \mathbf{a}(\mathbf{v}) \right] f \qquad (18)$$

— for a spatially homogeneous plasma, i.e. $f = f(\mathbf{v}; t)$, one obtains:

$$\frac{\partial f}{\partial t} + m^{-1} \mathbf{F}^{(0)} \frac{\partial f}{\partial \mathbf{v}} = -\frac{\partial}{\partial v_i} (\mathcal{F}_i^{(V)} f) + \frac{\partial^2}{\partial v_i \partial v_j} (D_{ij} f)$$
(19)

i.e. a Fokker-Planck (F.P.)-type diffusion equation;

— *drift* term:

$$\mathcal{F}_{i}^{(V)} = \left(1 + \frac{m}{m_{1}}\right) \frac{\partial D_{ij}}{\partial v_{i}} \tag{20}$$

= Dynamical friction!

In 1d, hence $D, \mathcal{F} \in \Re$ (in the absence of a field)

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial v} (\mathcal{F} f) + \frac{\partial^2}{\partial v^2} (D f).$$

5.1 Intermezzo: The Fokker-Planck eq. in the modelling of Brown motion

Basic form of the Fokker-Planck eq. (FPE) in 1d (in the absence of a force field)

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial v} (\eta v f) + D \frac{\partial^2 f}{\partial v^2} f \tag{21}$$

i.e.

$$D = \eta \frac{k_B T}{m} = \text{const.}$$
 $\mathcal{F} = -\eta v$

 $(\eta = const. \in \Re).$

- Cf. A. Einstein/P. Langevin (Brown motion), Kramers (phase space dynamics), S. Chandrasekhar in Astronomy, etc.

5.2 Fokker-Planck Eq. in 6d phase space $\Gamma = \{x, v\}$

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} + \frac{1}{m} \mathbf{F}_{\mathbf{ext}} \frac{\partial f}{\partial \mathbf{v}} = -\frac{\partial}{\partial q_i} (\mathcal{F}_i f) + \frac{\partial^2}{\partial q_i \partial q_j} (D_{ij} f) \equiv \Theta\{f\}$$

- 6×6 diffusion matrix **D**, 6d friction vector:

$$\mathbf{D}^{\Theta}(\mathbf{x},\mathbf{v}) = \left(egin{array}{cc} \mathbf{0} & rac{1}{2}\mathbf{G}^T \ rac{1}{2}\mathbf{G} & \mathbf{A} \end{array}
ight) \qquad \qquad ec{\mathcal{F}} = (\mathbf{0},ec{\mathcal{F}}^{(V)})^T$$

5.3 Mathematical properties of the kinetic evolution operator - the positivity issue

The d.f. f should remain, at all times (under the action of a kinetic evolution operator)

(a) $real\ (f \in \Re)$, (b) $normalized\ (f = 1)$, and (c) $non\ negative\ (f \ge 0)$ (def. semi-group); also: (d) (H-theorem) Monotonous convergence towards equilibrium.

 \rightarrow Condition: Diffusion matrix positive definite: this criterion is not satisfied here!

6 An alternative approach: the Φ operator

- The quantum kinetic theory of open systems can "lend" us the operator:

$$\mathcal{A}_{t'} \cdot = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} dt' \, U^{(0)}(-t') \cdot U^{(0)}(t') \tag{22}$$

[E.B. Davies, One-Parameter Semigroups (1980); Davies (1974); Tzanakis (1988)]

- a Markovian operator: loss of the memory (non-locality) effect.
- (It has been proven that) the action of the Φ operator preserves the positivity of f!

7 Construction of the Φ operator for magnetized plasma

If $f = f(\mathbf{v}; t)$ (homogeneous plasma):

$$\frac{\partial f}{\partial t} + \frac{e}{mc} (\mathbf{v} \times \mathbf{B}) \frac{\partial f}{\partial \mathbf{v}} = \left[\left(\frac{\partial^2}{\partial v_x^2} + \frac{\partial^2}{\partial v_y^2} \right) \left[D_{\perp}(\mathbf{v}) f \right] + \frac{\partial^2}{\partial v_z^2} \left[D_{\parallel}(\mathbf{v}) f \right] - \frac{\partial}{\partial v_x} \left[\mathcal{F}_x(\mathbf{v}) f \right] - \frac{\partial}{\partial v_y} \left[\mathcal{F}_y(\mathbf{v}) f \right] - \frac{\partial}{\partial v_z} \left[\mathcal{F}_z(\mathbf{v}) f \right] \right]$$

7.1 General form of the Φ kinetic operator: non-uniform plasma

- If $f = f(\mathbf{x}, \mathbf{v}; t)$:

$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} + \frac{e}{mc} \left(\mathbf{v} \times \mathbf{B} \right) \frac{\partial f}{\partial \mathbf{v}} = \left[\left(\frac{\partial^2}{\partial v_x^2} + \frac{\partial^2}{\partial v_y^2} \right) \left[D_{\perp}(\mathbf{v}) f \right] + \frac{\partial^2}{\partial v_z^2} \left[D_{\parallel}(\mathbf{v}) f \right] \right]$$

$$+2s\Omega^{-1}\Big[\frac{\partial^2}{\partial v_x\partial y}-\frac{\partial^2}{\partial v_y\partial x}\Big]\Big[D_\perp(\mathbf{v})f\Big] +\Omega^{-2}D_\perp^{(XX)}(\mathbf{v})\Big(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\Big)f$$

$$-\frac{\partial}{\partial v_x} \left[\mathcal{F}_x(\mathbf{v}) f \right] - \frac{\partial}{\partial v_y} \left[\mathcal{F}_y(\mathbf{v}) f \right] - \frac{\partial}{\partial v_z} \left[\mathcal{F}_z(\mathbf{v}) f \right]$$

$$+ s \Omega^{-1} \mathcal{F}_y(\mathbf{v}) \frac{\partial}{\partial x} f - s \Omega^{-1} \mathcal{F}_x(\mathbf{v}) \frac{\partial}{\partial y} f$$

- Terms in $\partial^2/\partial z\partial v_z,\,\partial^2/\partial z^2$ have been omitted.
- New diffusion term \perp **B**, new diffusion X V- term ($\sim \partial^2 f/\partial v_i \partial v_j$).

8 Coefficients in the FPE - relation to microscopic dynamics

General form 8.1

$$\left\{ \mathbf{A}(\mathbf{x}, \mathbf{v}) \right\} = \frac{n}{m^2} \int_0^{t \to \infty} d\tau \int d\mathbf{x}_1 \int d\mathbf{v}_1 \, \phi_{eq}(\mathbf{v}_1) \\
\mathbf{F}_{int}(|\mathbf{x} - \mathbf{x}_1|) \otimes \mathbf{F}_{int}(|\mathbf{x}(-\tau) - \mathbf{x}_1(-\tau)|) \left\{ \mathbf{N}^{T}(\tau) \right\} \\
= \frac{n}{m^2} \int_0^{\infty} d\tau \, \mathbf{C}(\mathbf{x}, \mathbf{v}; t, t - \tau) \left\{ \mathbf{N}^{T}(\tau) \right\} \\
\mathbf{N}^{T}(\tau) \right\}$$
(23)

- Friction vector:

$$F_i = \left(1 + \frac{m}{m_1}\right) \frac{\partial D_{ij}}{\partial v_j} \tag{24}$$

(23)

- Time correlation functions $C_{ij}(\tau)$ for the interaction forces (Kubo coefficients).

8.2 Exact form of the diffusion coefficients for magnetized plasma

Working hypotheses: (i) R in a Maxwellian state; (ii) Debye type interaction potential V(r):

$$\left\{ \begin{cases}
D_{\perp} \\
D_{\perp} \\
D_{\parallel}
\end{cases} \right\} = D_0 \Lambda \int_0^t d\tau' \int_1^{x_{max}} dx \ e^{\Lambda^2 (1-x^2) \sin^2 \frac{\tau'}{2}} \left(1 - \frac{1}{x^2}\right)^{\{1,0\}} e^{-\tilde{v}_{\parallel}^2}$$

$$J_O(2\Lambda\sqrt{x^2 - 1}\,\tilde{v}_\perp\,\sin\frac{\tau'}{2})\,\,\tilde{F}_{\{\perp,\parallel\}} \left\{ \begin{cases} \frac{1}{2}\cos\tau'\\ (-s^\alpha)\frac{1}{2}\sin\tau'\\ (1 + \frac{1}{2}\cos\tau') \end{cases} \right\}$$

where

$$x \equiv \frac{\tilde{k}_{\perp}}{k_D} = \left(1 + \frac{k_{\perp}^2}{k_D^2}\right)^{1/2}, \qquad \tau' = \Omega \tau, \qquad D_0 \equiv \frac{2\sqrt{2} n e^4}{m^2 \sqrt{k_B T}}$$

(Spitzer plasma collision frequency).

- The functions $\tilde{F} = \tilde{F}(\phi(x, \tau'), \tilde{v}_{\parallel})$ are given by:

$$\tilde{F}_{\{\perp,\parallel\}}^{\alpha'} = \pm \sqrt{\pi} \,\phi \, + \frac{\pi}{4} \sum_{s=+1,-1} \left[(1 \mp 2 \,\phi^2 \mp s2 \,\phi \,\tilde{v}_{\parallel}) \,e^{(\phi+s\,\tilde{v}_{\parallel})^2} \,Erfc(\phi+s\,\tilde{v}_{\parallel}) \right],$$

where

$$\phi = \frac{1}{2} \Lambda \tau' x, \qquad \Lambda = \sqrt{2} \frac{\omega_p}{\Omega}, \qquad \tilde{v}_* = (\frac{m v_*^2}{2k_B T})^{1/2}, \qquad * \in \{\bot, \|\}$$

$$k_D = (\frac{4\pi e_\alpha^2 n_\alpha}{k_B T_\alpha})^{1/2} \qquad \omega_{p,\alpha} = (\frac{4\pi e_\alpha^2 n_\alpha}{m_\alpha})^{1/2}$$

$$Erfc(x) = 1 - Erf(x) \equiv 1 - \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

9 Diffusion coefficients: a parametric study

Considering an electron plasma characterized by

- a temperature $T = 10 \, KeV$,
- density $n = 10^{14} \, cm^{-3} = 10^{20} \, m^{-3}$,
- plasma frequency $\omega_{p,e} = 5.64 \cdot 10^{11} \, s^{-1}$, and
- cyclotron frequency $\Omega_e = 1.76 \, 10^{11} \times B$ s^{-1} (B in Tesla),

we have studied

the correlation function $C_{\perp}(\tau)$ vs. time τ , and

the coefficients $D_{\perp,\parallel}$ vs. the test-particle velocity.

Figure 3: The transverse element of the interaction correlation function $C_{\perp}(\tau; v_{\perp}, v_{\parallel}, B)$ vs. time τ (in gyration periods $T_c = 2\pi/\Omega$), for different values of B ($\sim \Omega$). We have considered as typical values $v_{\perp} = v_{\parallel} = v_{th} = (T/m)^{1/2}$. Notice the peaks (attenuated) at every period.

- Field dependence.
- Space *confinement* due to the field particles stick to their helicoidal trajectories.
- Velocity dependence.

Figure 4: (a) The transverse diffusion coefficient D_{\perp} and (b) the friction vector (norm) \mathcal{F}_{\perp} (normalized) vs. the test-particle velocity v_{\perp} (\perp field) (scaled by the sound velocity) for a magnetized electrostatic plasma. All coefficients increase with the field.

Figure 5: The transverse diffusion coefficient D_{\perp} vs. the dimensionless parameter Λ ($\sim 1/\Omega$ - see def. above). The asymptotic value (dashed line) corresponds to the limit $\Lambda \to \infty$, i.e un-magnetized plasma ($\Lambda \to \infty$ implies $\Omega \to 0$). In (c), we have focused in the region near $\Lambda \approx 1$. We have taken $v_{\perp} = v_{\parallel} = v_{th} = (T/m)^{1/2}$. The different curves in (a) correspond to different values of the upper time integration limit t - cf. p. 23 above.

- for $\Lambda \gg 1$ (weak field): the *Landau* description is sufficient (for $\Omega \to 0$).
- near $\Lambda \approx 1$ (important field, $\Omega \approx \omega_p$): strong field dependence of the collision term!

10 Conclusions

- Relying on first principles of Non-Equilibrium Statistical Mechanics, we have presented a method for the description of the (macroscopic) behavior of large (N particle) systems, as results from the microscopic laws of motion.
- We have focused on:
 - 1. the space dependence of the d.f, and
 - 2. the dependence of the collision term on the external field.
- We have shown that a widely adopted "Markovianization" hypothesis (the Θ operator) leads to erroneous (physically unacceptable) results.
- By adopting an alternative markovianization approach (the Φ operator), we have succeeded in deriving a correct FP-type kinetic equation for a t.p. in magnetized plasma.
- \bullet A numerical investigation has shown a strong dependence of \mathcal{K} on the magnetic field.

References

- L.D. Landau & E. M. Lifshitz, 1982, Statistical Physics, Part 1, Pergamon Press; επίσης: R.
 Balescu, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, 1975.
- [2] R. Balescu, Transport Processes in Plasmas, V. 1, Classical Transport, N. Holland, A'dam, 1988.
- [3] H.Goldstein, Classical Mechanics, 1980, Addison-Wesley.
- [4] I. Kourakis, PhD thesis, U.L.B., Brussels, 2002.
- [5] R. Balescu, Statistical Mechanics of Charged Particles, Wiley, 1963.
- [6] C.W. Gardiner, Handbook of Stochastic Methods, Springer-Verlag 1985.
- [7] See the works by: G. E. Uhlenbeck & L. S. Ornstein (1930) and S. Chandrasekhar (1943); both are reprinted in: N. Wax, 1954, *Noise and Stochastic Processes*, Dover, New York.
- [8] E. B. Davies, 1980, One-Parameter Semigroups, Academic Press, London.
- [9] A.P.Grecos, C.Tzanakis, Physica A 151 (1988).

- [10] I.Kourakis, Plasma Phys.Control.Fusion 41 587 (1999);

 "Derivation and properties for a kinetic equation for a charged particle interacting with a magnetized plasma", A.Grecos & I.Kourakis (in preparation).
- [11] I. Kourakis, D. Carati & B. Weyssow, Proceedings of the 2000 ICPP Conference (Québec, Canada), pp. 49 53.