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1 Introduction — theoretical framework

We are interested in the description of the dynamics of a large physical system of N particles

(7 =1,2,..., N), which interact:
e among themselves (= collisions)
e with an external force field.

Application:
Plasma = large ensemble of charged particles (e™, i", ...)
Particular features:

e [ong-range electrostatic interactions;

e presence of EM fields, Lorentz forces.



1.1 Statistical Mechanics - Review of notions

* Probability density (distribution function) py, in phase space I'y = {x;,Vj}.
* Liouville Equation for N particles:

8pN
—— =1L 1
ot N PN ( )

* General (formal) solution of the Liouville Equation:

px(t) = N0 py(t) (2)
* eIn(t=10): Time evolution operator (“Propagator”):
its exact knowledge 1s tantamount to the knowledge of the complete problem of motion
(of N particles): impossible for N = 10?* particles!!!

* Kinetic evolution equation (for 1 particle, d.f.:  pi(I';) = f)

of
o =T 3)

T Kinetic evolution operator (to be determined for a given specific physical problem).
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1.2 Kinetic equation (K.E.) - Collision term

General form:

0 0 0
(‘9{ + V(%JZ + m_lFaff = K{f} (4)

= fxvit).
*F =F. + Fi external forces and mean-field forces (Vlasov).
* The collision operator IC should take into account the existence of an external field.

*F;,; and IC express the mutual interactions between particles.

Some known collision terms (to be used with caution in Plasma Physics) include:
- BoLrZMANN: Not applicable for long-range (e.g. Coulomb) interactions.
- VLAsov: Contains no collision term (hence no irreversibility, no H-Theorem).
- LANDAU: Contains a collision term, but takes into account no external force field.
- FOKKER-PLANCK: Phenomenological description of stochastic processes:

NO rigorous link to microscopic dynamics in the presence of the field.
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Figure 1: Inter-particle interaction — notice the difference between
(a) Point-like interactions between charge-neutral particles (sphere-model)
and

(b) long-range electrostatic interactions between charged particles.
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Figure 2: Heuristic representation of the trajectory of colliding charges, in the presence of a
magnetic field. Compare the typical interaction space scale (e.g. Debye radius rp) to the

typical Larmor gyration scale (Larmor radius pr) in three cases:

(a) pr > rp, (b) pr = 1p kai (g) pr < 7p.



1.3 Macroscopic description
* Observable quantity (macroscopic) A(x;t) = mean value of a:
A:/dvaf =<a>r,

where a: a function of microscopic variables {x;, v;},
e.g. density n =< 1 >, velocity u =< v >p_, and so forth.

The evolution of A in time obeys a relation in the form:

0A 0 da of

&f:&f/dvaf:/dvatf f:/dva&f:/dva’ff:...
— Fluid-dynamical description of a Stat. Mechanical system
— Magnetohydrodynamic (MHD) Plasma Theory

Ref. [R. Balescu, Statistical Mechanics (1975)] etc.



2 Model description — Test-particle formalism

Ingredients:
- a heat-bath (the “reservowr”™ 1), in thermal equilibrium;
- a reference particle (the test-particle o) ;
- an external field;

- Weak interaction between /7 kai o .
Application 1: 3d plasma: N charged particles in a homogeneous & static magnetic field
B=B:z.

Application 2: a chain of N coupled harmonic oscillators, in 1d.

“Application 3": Free motion (vanishing field limit).



3 Hamiltonian function — Equations of motion

- Hamiltonian:

H=H,+H,+ \H;;

- Hp: Hamiltonian of the reservoir (N particles)
N N
HH — ZlH/JV Z Z V/'n
j=

j<nn=1

- Hj: 1 particle term (j = 1.2, ... \V and o);
- H;,: interaction term (among the two subsystems):
N
Hint — Z Van
n=1
-V =Vxi—-x)) (6,5=12,..,N,0);
- A< 1 (Weak interaction).



o Case study 1 (1d harmonic oscillators):

1 2 1 2,.2

H; = 5"Miv) + MW; T
e Case study 2 (magnetized plasma):
fﬂ&mﬁz%ﬁm—gA%ﬂz2W%

where A(x;) is the vector potential, i.e.
B(xj) =V x A(xj)

[H. Goldstein, Classical Mechanics, 1980]etc.

e Case study 3 (free motion, no field):

Hj = —mjvj .
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3.1 Equations of motion

-x = (2,9,2), V=_0,0y,0,).

- Fo: External force (due to the field)
e.g. Lorentz force: Fy, = £(v x B),
e.g. restoring (spring) force: Fo = —mw3ix?,
Fo = 0, for a free particle,

and so forth ...

- Fiui: interaction force
0
Fint = T ox > V(|x —xj)

— Collisions: Random, “stochastic” process !
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3.2

Plasma:
1
vO(t) = v+ [ dt' Fo(t') = R(t) v
xO(t) = x+ [ dt' v(t) = x + N(t)v (9)
cosi s sinflit 0
N“t)=Rt) = | —s sin cosQt 0
0 0 1
and
sin 2t s (1—cosQt) 0
N<t) = /Ot dt' R*(t) = Q' | s (cosQt — 1) sin Q¢ 0
0 0 Qt
Q:Qazlea’B’ stazeia::tl
M C lea|

In the free motion limit: @ — 0, N — ¢1, N — L
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- Harmonic oscillator (1d):

- Free motion:

{CCZ(t>, Uz(t)} = {CL’Z + Uﬂf,?}i} 1= 1, 2, 3

- General solution for A = 0 (working hypothesis):

1
viO(t) = v+ — ['dt' Fo(t') = M/(t)x + N'(¢) v
m

xO(t) = x+ [ df v(t') = M(t)x + N(t)v (10)
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4 Statistical description

Liouville Equation:

0
P L p=(Ly+ Lo+ L) p

ot

The operators are defined as:

N N N

LH — Z LE‘,()) + Z Z le); Lint — Z Lcm

n=1 j<n n=1 n=1

- Lg-o): 1 particle Liouville operator in the presence of the field:
0 1 ) O
O _ 7O
J Vi an m; J an

(7=1.2.....N and o),

- L;j: mutual interaction term:

aV(‘Xi—XjD(l 0 1 0

Lij - 8Xi B

m;Ovi  m;Ov;

(11)

(12)

(13)

- The reservoir is in thermal equilibrium, i.e. O, 0p = Ly dp =0 (0r = OMazwell)-
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4.1 Reduction of the Liouville Eq. — Perturbation theory — BBGKY hier-

archy

1. We define p-particle reduced distribution functions (rpdf) f, (p =1,2,...,N), e.g.

fi=[dTgp(T),  fo= [dlop(I), . (14)

(e =T —{IMUTl,}, ie I' =T —T', =g, and so forth) ;

2. BBGKY hierarchy of equations for the rpdfs: integrating Eq. (1), we obtain a system of
N coupled equations for f, ;

3. We express the BBGKY hierarchy equations as a power series in A;

4. Assuming that A < 1, we keep only the lowest-order terms, up to A, of the BBGKY
hierarchy (truncation), and

5. we combine the first two members of the hierarchy, now decoupled from the rest, into a

closed equation in terms of the rpdf f = f;.

15



(5 =LY f* = XX [d*q [d*vi Ly gow +ON)

(5, = L8 = L") g = ALy 6, £+ O(N) (15)

-g= 20‘0/ — ¢ Fo: correlation function.

4.2

a /
<at _ Lé@) f*=K= % Ny /Ot dT/Xm/ dvy Ly BLOTL] qbgq(w) fa<XaV§t_ T) (16)

Note the influence of:

(a) the interaction potential V' (r), through the operator L; = L1,

. . (0) (0)
(b) the external (e.g. magnetic) field, via the operator 207 = ebo T eli ™7

)

(¢) the previous time history of the function f (!): memory effect (non-Markovian Eq.).
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5 A “pseudo-Markovian” approximation

— “Markovianization” hypothesis: f(t —7) ~ e 107 f(t) & asymptotic limit: t — oo

K~ ny "dr [dx [ dvi Lye™T Lol (v) [4(1) = O{f} (17)
— Result: the PDE
of Lp O _ 0000 m
ar + mFextaV = aV[A(v) " + - a<v)] fo(18)

— for a spatially homogeneous plasma, i.e. f = f(v;t), one obtains:

of 00f 0 5?

—1(0) - V) D, 19
ot m v (%Z'(]:Z )+ (%Z(%]( if) (19)
i.e. a FOKKER-PLANCK (F.P.)-type diffusion equation;
— drift term:
(V) m 8Dw
W (14 = 20
F =) (20)

= Dynamical friction !
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In 1d, hence D, F € R (in the absence of a field)

of ) 5?

Fr _av(:’rf)—i_avg(Df)'

5.1

Basic form of the Fokker-Planck eq. (FPE) in 1d (in the absence of a force field)

of 0 0 f
- (%(77@ f)+D8v2 / (21)
l.e.
D:nkBT:const. F =-nv
m

(n = const. € RN).
- Cf. A. Einstein/P. Langevin (Brown motion), Kramers (phase space dynamics), S. Chan-

drasekhar in Astronomy, etc.
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5.2 Fokker-Planck Eq. in 6d phase space I' = {x, v}

of , of 1, of % &

™ Vo + EFexta_V = —a—%(ﬂ f)+m(Dij f) =6{f}

- 6 X 6 diffusion matriz D, 6d friction vector:

5.3 Mathematical properties of the kinetic evolution operator - the posi-

tivity issue

The d.f. f should remain, at all times (under the action of a kinetic evolution operator)
(a) real (f € R), (b) normalized (/ f = 1), and (¢) non negative (f > 0 ) (def. semi-
group); also: (d) (H-theorem) Monotonous convergence towards equilibrium.

— Condition: Diffusion matrix positive definite: this criterion is not satisfied here!
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6 An alternative approach: the ¢ operator

— The quantum kinetic theory of open systems can “lend” us the operator:

, L 0) Oy
Ay - @E}OQT/ dt' U0 (=) - UO)

[E.B. Davies, One-Parameter Semigroups (1980); Davies (1974); Tzanakis (1988)]
— a Markovian operator: loss of the memory (non-locality) effect.

— (It has been proven that) the action of the ® operator preserves the positivity of f!

7 Construction of the ¢ operator for magnetized plasma

If f= f(v;t) (homogeneous plasma):

o+ e VB = (5 5P| + SlD
0 0 0
o Fulv) f] - (%y[fy(v) f] - o F.(v) f
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7.1 General form of the ¢ kinetic operator: non-uniform plasma

-If f = f(x, v;t):
of _of of 9 0 o2
5 Vo e VB = (Gt 52 (Do) + 5 ID)/]
_ (92 (92 B (‘92 (92
T2st 1{6’0958?; B (%y(?aj [DMV)ﬂ +Q7° DiXX)W)(ax? * 0y2>f

B 0
o,

W= o AW = G Fw ]

9, 9,
1 g . 1 g
+sQ7 Fy(v) 5 f— sQ " Fu(v) ayf

- Terms in 0%/9z0v., 0%/0z* have been omitted.

- New diffusion term L B, new diffusion X — V- term (~ 9% f /0v;0v;).
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8 Coefficients in the FPE - relation to microscopic dynamics

8.1

A(x,v) N oo
= — dr | dxq1 [ dvy peq(V1)
G(x,V) m? /0 / / '
N (1)
Fint (|x — x1]) @ Fint([x(—7) — x1(—7)])
N*(7)
00 N/T
- 712/0 dr C(x,v;t,t —7) (7) (23)
m N(r)
— Friction vector:
m . 0D;;
F=(1+—)—"" 24
(1+ m1> o0v; (24)

— Time correlation functions Cj;(7) for the interaction forces (Kubo coefficients).
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8.2

Working hypotheses: (i) R in a Maxwellian state; (ii) Debye type interaction potential

D,
D L ~
! = Do/\/t dr' [ dg A (1) Sm22<1 — 1){1’0} el
D(XX) 0 1 $2
1
D

/
J0(2A V x2 — 11~)J_ sSin 2) F{J_’H}
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where

];}J_ ki 1/2 ) 2v/2n e
= —=(1+-—> = Dy=———=
v=o= (1 /ﬁ%) ’ TSR 0= 2 EaT

(Spitzer plasma collision frequency).

- The functions F' = F(é(z, '), v)) are given by:

Felpy=2vao+. % [0F26 F200) 0 Brfe(é+ 7)),

4 s=+1,—1
where
1 w B mu?
p=oATe, A=VEL de=( ) we (Ll
47T€2n 1/2 47T€2n 1/2
[ a'tanl/ L= a'banl/
b= () i = (o)

Erfe(zr)=1—FErf(z)=1-— /x e tdt.

0

2
N
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9 Diffusion coefficients: a parametric study

Considering an electron plasma characterized by

— a temperature T' = 10 KeV/,

— density n = 10 em ™3 = 102 m =3,

~ plasma frequency w, . = 5.64 - 10" 57! and

— cyclotron frequency €, = 1.76 101" x B s7! (B in Tesla),
we have studied

the correlation function C', (1) vs. time 7, and

the coefficients D || vs. the test-particle velocity.
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Figure 3: The transverse element of the interaction correlation function C'y (7501, v, B) vs.
time 7 (in gyration periods T, = 27 /§2), for different values of B (~ ). We have considered

as typical values v, = v = vy, = (T'/m)"%. Notice the peaks (attenuated) at every period.
y |

— Field dependence.

— Space confinement due to the field - particles stick to their helicoidal trajectories.

— Velocity dependence.
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Figure 4: (a) The transverse diffusion coefficient D, and (b) the friction vector (norm) F
(normalized) vs. the test-particle velocity v, (L field) (scaled by the sound velocity) for a

magnetized electrostatic plasma. All coefficients increase with the field.
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Figure 5: The transverse diffusion coefficient D, vs. the dimensionless parameter A (~ 1/ - see def.
above). The asymptotic value (dashed line) corresponds to the limit A — oo, i.e un-magnetized
plasma (A — oo implies 2 — 0). In (c), we have focused in the region near A ~ 1. We have taken
vi = v = vy, = (T/m)"2. The different curves in (a) correspond to different values of the upper time

integration limit ¢ - c¢f. p. 23 above.

— for A > 1 (weak field): the Landau description is sufficient (for 2 — 0).

—near A = 1 (important field, 2 &~ w,): strong field dependence of the collision term!
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10 Conclusions

e Relying on first principles of Non-Equilibrium Statistical Mechanics, we have presented
a method for the description of the (macroscopic) behavior of large (N particle) systems,

as results from the microscopic laws of motion.

e We have focused on:
1. the space dependence of the d.f, and

2. the dependence of the collision term on the external field.

e We have shown that a widely adopted “Markovianization” hypothesis (the © operator)

leads to erroneous (physically unacceptable) results.

e By adopting an alternative markovianization approach (the ® operator), we have suc-

ceeded in deriving a correct FP-type kinetic equation for a t.p. in magnetized plasma.

e A numerical investigation has shown a strong dependence of K on the magnetic field.
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