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Outline
o Introduction

– Amplitude Modulation: a rapid overview of notions and ideas;
– Relevance with space and laboratory observations;
– Intermezzo: Dusty Plasmas (DP) (or Complex Plasmas) & dust crystals.

o Case study 1 (Part A): Fluid model for ES waves in weakly-coupled DP.
– A pedagogical paradigm: Ion–acoustic plasma waves;
– Other examples: EAWs, DAWs, ...

o The reductive perturbation (multiple scales) formalism.

o Modulational Instability (MI) & envelope excitations.

o Case study 2 (Part B): Solitary excitations in dust (Debye) lattices.

o Conclusions.
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1. Intro. The mechanism of wave amplitude modulation
The amplitude of a harmonic wave may vary in space and time:

→

www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 3

1. Intro. The mechanism of wave amplitude modulation
The amplitude of a harmonic wave may vary in space and time:

→
This modulation (due to nonlinearity) may be strong enough to lead to wave
collapse (modulational instability) or ...

→ ?
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1. Intro. The mechanism of wave amplitude modulation
The amplitude of a harmonic wave may vary in space and time:

→
This modulation (due to nonlinearity) may be strong enough to lead to wave
collapse (modulational instability) or to the formation of envelope solitons:

→ ?
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Modulated structures occur widely in Nature,
e.g. in oceans (freak waves, or rogue waves) ...

(from: [Kharif & Pelinovsky, Eur. Journal of Mechanics B/Fluids 22, 603 (2003)])
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... during freak wave reconstitution in water basins, ...

(from: [Klauss, Applied Ocean Research 24, 147 (2002)])
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..., in EM field measurements in the magnetosphere, ...

(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)])
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..., in satellite (e.g. CLUSTER, FAST, ...) observations:

(*) From: O. Santolik et al., JGR 108, 1278 (2003); R. Pottelette et al., GRL 26 2629 (1999).
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Modulational instability (MI) was observed in simulations,
e.g. early (1972) numerical experiments of EM cyclotron waves:

[from: A. Hasegawa, PRA 1, 1746 (1970); Phys. Fluids 15, 870 (1972)].
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Spontaneous MI has been observed in experiments,:

e.g. on ion acoustic waves
[from: Bailung and Nakamura, J. Plasma Phys. 50 (2), 231 (1993)].
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Questions to be addressed in this brief presentation:

o How can one describe the (slow) evolution (modulation) of a
wave amplitude in space and time?
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Questions to be addressed in this brief presentation:

o How can one describe the (slow) evolution (modulation) of a
wave amplitude in space and time?

o Can Modulational Instability (MI) of plasma “fluid” modes be
predicted by a simple, tractable analytical model?
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Questions to be addressed in this brief presentation:

o How can one describe the (slow) evolution (modulation) of a
wave amplitude in space and time?

o Can Modulational Instability (MI) of plasma “fluid” modes be
predicted by a simple, tractable analytical model?

o Can envelope modulated localized structures (such as those
observed in space and laboratory plasmas) be modeled by an
exact theory?
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Questions to be addressed in this brief presentation:

o How can one describe the (slow) evolution (modulation) of a
wave amplitude in space and time?

o Can Modulational Instability (MI) of plasma “fluid” modes be
predicted by a simple, tractable analytical model?

o Can envelope modulated localized structures (such as those
observed in space and laboratory plasmas) be modeled by an
exact theory?

o Focus: electrostatic waves; e.g. dust-ion acoustic waves
(DIAW); electron acoustic (EA), dust acoustic (DA) waves, ...
also (part B): dust-lattice waves in Debye crystals.
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Intermezzo: DP – Dusty Plasmas (or Complex Plasmas):
definition and characteristics of a focus issue

o Ingredients:
– electrons e− (charge −e, mass me),
– ions i+ (charge +Zie, mass mi), and
– charged micro-particles ≡ dust grains d (most often d−):

charge Q = ±Zde ∼ ±(103 − 104) e,
mass M ∼ 109mp ∼ 1013me,
radius r ∼ 10−2 µm up to 102 µm.
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Origin: Where does the dust come from?
o Space: cosmic debris (silicates, graphite, amorphous carbon), comet dust,

man-made pollution (Shuttle exhaust, satellite remnants), ...

o Atmosphere: extraterrestrial dust (meteorites): ≥ 2 · 104 tons a year (!)(*),
atmospheric pollution, chemical aerosols, ...

o Fusion reactors: plasma-surface interaction, carbonaceous particulates
resulting from wall erosion-created debris (graphite, CFCs: Carbon Fiber
Composites, ...)

o Laboratory: (man-injected) melamine–formaldehyde particulates (**)
injected in rf or dc discharges; 3d (= multiple 2d layers) or 1d (by
appropriate experimental setting) crystals.

Sources: [P. K. Shukla & A. Mamun 2002], (*) [DeAngelis 1992], (**) [G. E. Morfill et al. 1998]

www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 17

Some unique features of the Physics of Dusty Plasmas:

o Complex plasmas are overall charge neutral ; most (sometimes all !) of the
negative charge resides on the microparticles;

o The microparticles can be dynamically dominant : mass density ≈ 102 times
higher than the neutral gas density and ≈ 106 times higher than the ion
density !

o Studies in slow motion are possible due to high M i.e. low Q/M ratio (e.g.
dust plasma frequency : ωp,d ≈ 10− 100 Hz);

o The (large) microparticles can be visualised individually and studied at the
kinetic level (with a digital camera!) → video;

o Dust charge (Q 6= const.) is now a dynamical variable, associated to a new
collisionless damping mechanism;
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(...continued) More “heretical” features are:

o Important gravitational (compared to the electrostatic) interaction effects;
gravito-plasma physics; gravito-electrodynamics; Jeans-type (gravitational)
plasma instabilities etc. [Verheest PPCF 41 A445, 1999]

o Complex plasmas can be strongly coupled and exist in “liquid”
(1 < Γ < 170) and “crystalline” (Γ > 170 [IKEZI 1986]) states, depending on the
value of the effective coupling (plasma) parameter Γ;

Γeff =
< Epotential >

< Ekinetic >
∼ Q2

r T
e−r/λD

(r: inter-particle distance, T : temperature, λD: Debye length).
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Part 2. Fluid model for electrostatic waves in weakly-coupled DP.
The standard recipe involves the following ingredients:
– A dynamical constituent (particle species) α ;
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Part 2. Fluid model for electrostatic waves in weakly-coupled DP.
The standard recipe involves the following ingredients:
– A dynamical constituent (particle species) α ;
– a neutralizing background of (one or several) species α′

(in a – presumably – known state).
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Part 2. Fluid model for electrostatic waves in weakly-coupled DP.
The standard recipe involves the following ingredients:
– A dynamical constituent (particle species) α ;
– a neutralizing background of (one or several) species α′

(in a – presumably – known state).

Typical paradigm (cf. textbooks) to focus upon:
– Ion acoustic waves (IAW): ions (α = i) in a background of thermalized
electrons (α′ = e): ne = ne,0 e

eΦ/KBTe.
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Part 2. Fluid model for electrostatic waves in weakly-coupled DP.
The standard recipe involves the following ingredients:
– A dynamical constituent (particle species) α ;
– a neutralizing background of (one or several) species α′

(in a – presumably – known state).

Typical paradigm (cf. textbooks) to focus upon:
– Dust-ion acoustic waves (DIAW): ions (α = i) in a background of thermalized
electrons (α′ = e): ne = ne,0 e

eΦ/KBTe and immobile dust grains: nd = const.
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Part 2. Fluid model for electrostatic waves in weakly-coupled DP.
The standard recipe involves the following ingredients:
– A dynamical constituent (particle species) α ;
– a neutralizing background of (one or several) species α′

(in a – presumably – known state).

Typical paradigm (cf. textbooks) to focus upon:
– Ion acoustic waves (IAW): ions (α = i) in a background of thermalized
electrons (α′ = e): ne = ne,0 e

eΦ/KBTe.

The theory applies to a variety of other modes, including e.g.

– Electron acoustic waves (EAW): electrons (α = e) in a background of
stationary ions (α′ = i): ni = cst.;
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Part 2. Fluid model for electrostatic waves in weakly-coupled DP.
The standard recipe involves the following ingredients:
– A dynamical constituent (particle species) α ;
– a neutralizing background of (one or several) species α′

(in a – presumably – known state).

Typical paradigm (cf. textbooks) to focus upon:
– Ion acoustic waves (IAW): ions (α = i) in a background of thermalized
electrons (α′ = e): ne = ne,0 e

eΦ/KBTe.

The theory applies to a variety of other modes, including e.g.

– Electron acoustic waves (EAW): electrons (α = e) in a background of
stationary ions (α′ = i): ni = cst.;

– DAW: dust grains (α = d) against thermalized electrons and ions (α′ = e, i):
ne = ne,0 e

eΦ/KBTe, ni = ni,0 e
−ZieΦ/KBTi.
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Fluid moment equations:
Density nα (continuity) equation:

∂nα
∂t

+∇ · (nαuα) = 0
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Fluid moment equations:
Density nα (continuity) equation:

∂nα
∂t

+∇ · (nαuα) = 0

Mean velocity uα equation:

∂uα
∂t

+ uα · ∇uα = − qα
mα

∇Φ

[(*) Cold fluid model]
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Fluid moment equations:
Density nα (continuity) equation:

∂nα
∂t

+∇ · (nαuα) = 0

Mean velocity uα equation:

∂uα
∂t

+ uα · ∇uα = − qα
mα

∇Φ− 1
mαnα

∇pα

[(*) Cold vs. Warm fluid model]
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Fluid moment equations:
Density nα (continuity) equation:

∂nα
∂t

+∇ · (nαuα) = 0

Mean velocity uα equation:

∂uα
∂t

+ uα · ∇uα = − qα
mα

∇Φ− 1
mαnα

∇pα

Pressure pα equation: [(*) Cold vs. Warm fluid model]
∂pα
∂t

+ uα · ∇pα = −γ pα∇ · uα

[γ = (f + 2)/f = cP/cV : ratio of specific heats e.g. γ = 3 for 1d, γ = 2 for 2d, etc.].
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Fluid moment equations:
Density nα (continuity) equation:

∂nα
∂t

+∇ · (nαuα) = 0

Mean velocity uα equation:

∂uα
∂t

+ uα · ∇uα = − qα
mα

∇Φ− 1
mαnα

∇pα

Pressure pα equation:
∂pα
∂t

+ uα · ∇pα = −γ pα∇ · uα

The potential Φ obeys Poisson’s eq.:

∇2Φ = −4π
∑

α′′=α,{α′}

qα′′ nα′′ = 4π e (ne − Zi ni + ...)
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Fluid moment equations:

∂nα
∂t

+∇ · (nαuα) = 0

∂uα
∂t

+ uα · ∇uα = − qα
mα

∇Φ− 1
mαnα

∇pα

∂pα
∂t

+ uα · ∇pα = −γ pα∇ · uα

∇2Φ = −4π
∑

α′′=α,{α′}

qα′′ nα′′ = 4π e (ne − Zi ni + ...)

Hypothesis: Overall charge neutrality at equilibrium:

qα nα,0 = −
∑
{α′}

qα′ nα′,0 ,

e.g. for DIAW: ne,0 − Zi ni,0 − sZd nd,0 = 0 (s = qd/|qd| = ±1).
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Reduced moment evolution equations:
Defining appropriate scales (see next slide) one obtains:

∂n

∂t
+∇ · (nu) = 0 ,

∂u
∂t

+ u · ∇u = −s∇φ− σ

n
∇p ,

∂p

∂t
+ u · ∇p = −γ p∇ · u ;

also,
∇2φ = φ− αφ2 + α′ φ3 − s β (n− 1) ; (1)

i.e. Poisson’s Eq. close to equilibrium: φ� 1; s = sgnqα = ±1.

- The dimensionless parameters α, α′ and β must be determined exactly for
any specific problem. They incorporate all the essential dependence on the
plasma parameters.
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We have defined the reduced (dimensionless) quantities:

- particle density : n = nα/nα,0;
- mean (fluid) velocity : u = [mα/(kBT∗)]1/2uα ≡ uα/c∗;
where c∗ = (kBT∗/mα)1/2 is a characteristic “sound” velocity (∗);
- dust pressure: p = pα/p0 = pα/(nα,0kBT∗);
- electric potential : φ = ZαeΦ/(kBT∗) = |qα|Φ/(kBT∗);

Also, time and space are scaled over:
- a characteristic time scale t0, e.g. the inverse DP plasma frequency

ω−1
p,α = (4πnα,0q2α/mα)−1/2

- a characteristic length scale r0 = c∗t0, e.g. an effective Debye length

λD,eff = (kBT∗/4πnα,0q2α)
1/2 .

Finally, σ = Tα/T∗ is the temperature (ratio) (∗) e.g. T∗ = Te for DIAWs.
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3. Reductive Perturbation Technique
– 1st step. Define multiple scales (fast and slow) i.e. (in 2d)

X0 = x , X1 = ε x , X2 = ε2 x , ...

Y0 = y , Y1 = ε y , Y2 = ε2 y , ...

T0 = t , T1 = ε t , T2 = ε2 t , ...
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3. Reductive Perturbation Technique
– 1st step. Define multiple scales (fast and slow) i.e. (in 2d)

X0 = x , X1 = ε x , X2 = ε2 x , ...

Y0 = y , Y1 = ε y , Y2 = ε2 y , ...

T0 = t , T1 = ε t , T2 = ε2 t , ...

and modify operators appropriately:

∂

∂x
→ ∂

∂X0
+ ε

∂

∂X1
+ ε2

∂

∂X2
+ ...

∂

∂y
→ ∂

∂Y0
+ ε

∂

∂Y1
+ ε2

∂

∂Y2
+ ...

∂

∂t
→ ∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ ...
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3. Reductive Perturbation Technique
– 1st step. Define multiple scales (fast and slow) i.e. (in 2d)

X0 = x , X1 = ε x , X2 = ε2 x , ...

Y0 = y , Y1 = ε y , Y2 = ε2 y , ...

T0 = t , T1 = ε t , T2 = ε2 t , ...

– 2nd step. Expand near equilibrium:
nα ≈ nα,0 + ε nα,1 + ε2 nα,2 + ...

uα ≈ 0 + εuα,1 + ε2 uα,2 + ...

pα ≈ pα,0 + ε pα,1 + ε2 pα,2 + ...

φ ≈ 0 + ε φ1 + ε2 φ2 + ...

(pα,0 = nα,0kBTα; ε� 1 is a smallness parameter ).
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Reductive perturbation technique (continued)
– 3rd step. Project on Fourier space, i.e. consider ∀m = 1, 2, ...

Sm =
m∑

l=−m

Ŝ
(m)
l eil(k·r−ωt) = Ŝ

(m)
0 + 2

m∑
l=1

Ŝ
(m)
l cos l(k · r− ωt)

for Sm = (nm, {ux,m, uy,m}, pm, φm), i.e. essentially :

n1 = n
(1)
0 + ñ

(1)
1 cos θ , n2 = n

(2)
0 + ñ

(2)
1 cos θ + ñ

(2)
2 cos 2θ, etc.
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Reductive perturbation technique (continued)
– 3rd step. Project on Fourier space, i.e. consider ∀m = 1, 2, ...

Sm =
m∑

l=−m

Ŝ
(m)
l eil(k·r−ωt) = Ŝ

(m)
0 + 2

m∑
l=1

Ŝ
(m)
l cos l(k · r− ωt)

for Sm = (nm, {ux,m, uy,m}, pm, φm), i.e. essentially :

n1 = n
(1)
0 + ñ

(1)
1 cos θ , n2 = n

(2)
0 + ñ

(2)
1 cos θ + ñ

(2)
2 cos 2θ, etc.

– 4rth step. (for multi-dimensional propagation) Modulation obliqueness:
the slow amplitudes φ̂(m)

l , etc. vary only along the x-axis:
Ŝ

(m)
l = Ŝ

(m)
l (Xj, Tj) , j = 1, 2, ...

while the fast carrier phase θ = k · r− ωt is now:
kx x+ ky y − ωt = k r cosα− ωt .
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First-order solution (∼ ε1)
Substituting in the model Eqs., and isolating terms in m = 1, we obtain:

o The dispersion relation ω = ω(k):

ω2 =
βk2

k2 + 1
+ γ σ k2 (2)

e.g. for DIAWs

ω ≈
(
ni,0
ne,0

)1/2(
kBTe
mi

)1/2

k =
(

1−sZd
nd,0
ne,0

)1/2(
kBTe
mi

)1/2

k

o The solution(s) for the 1st–harmonic amplitudes (e.g. ∝ φ
(1)
1 ):

n
(1)
1 = s

1 + k2

β
φ

(1)
1 =

1
γ
p
(1)
1 =

k

ω cos θ
u

(1)
1,x =

k

ω sin θ
u

(1)
1,y (3)
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Second-order solution (∼ ε2)

o From m = 2, l = 1, we obtain the relation:

∂ψ

∂T1
+ vg

∂ψ

∂X1
= 0 (4)

where
– ψ = φ

(1)
1 is the potential correction (∼ ε1);

– vg = ∂ω(k)
∂kx

is the group velocity along x̂;

– the wave’s envelope satisfies: ψ = ψ(ε(x− vgt)) ≡ ψ(ζ).

o The solution, up to ∼ ε2, is of the form:

φ ≈ ε ψ cos θ + ε2
[
φ

(2)
0 + φ

(2)
1 cos θ + φ

(2)
2 cos 2θ

]
+O(ε3) ,

etc. (+ similar expressions for nd, ux, uy, pd): → Fourier harmonics!.
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Third-order solution (∼ ε3)

o Compatibility equation (from m = 3, l = 1), in the form of:

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0 . (5)

i.e. a Nonlinear Schrödinger–type Equation (NLSE) .

o Variables: ζ = ε(x− vgt) and τ = ε2 t;

o Dispersion coefficient P :

P =
1
2
∂2ω

∂k2
x

=
1
2

[
ω′′(k) cos2α + ω′(k)

sin2α

k

]
; (6)

o Nonlinearity coefficient Q: ...
A (lengthy!) function of k, angle α and Te, Ti, ... → (omitted).
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4a. Modulational (in)stability analysis

o The NLSE admits the harmonic wave solution:

ψ = ψ̂ eiQ|ψ̂|
2τ + c.c.

o Perturb the amplitude by setting: ψ̂ = ψ̂0 + ε ψ̂1,0 cos (k̃ζ − ω̃τ)

o We obtain the (perturbation) dispersion relation:

ω̃2 = P 2 k̃2

(
k̃2 − 2

Q

P
|ψ̂1,0|2

)
. (7)

o If PQ < 0: the amplitude ψ is stable to external perturbations;

o If PQ > 0: the amplitude ψ is unstable for k̃ <
√

2QP |ψ1,0|.
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Stability profile (IAW): Angle α versus wavenumber k
Typical values: Zi = +1 (hydrogen plasma), γ = 2.

– Ion-acoustic waves; cold (σ = 0) vs. warm (σ 6= 0) fluid:
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Stability profile (IAW): Angle α versus wavenumber k
Typical values: Zi = +1 (hydrogen plasma), γ = 2.

– Ion-acoustic waves; cold (σ = 0) vs. warm (σ 6= 0) fluid:

– Dust-ion acoustic waves, i.e. in the presence of negative dust (nd,0/ni,0 = 0.5):
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Stability profile (IAW): Angle α versus wavenumber k
Typical values: Zi = +1 (hydrogen plasma), γ = 2.

– Ion-acoustic waves; cold (σ = 0) vs. warm (σ 6= 0) fluid:

– Dust-ion acoustic waves, i.e. in the presence of positive dust (nd,0/ni,0 = 0.5):
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Stability profile (IAW/EAW): Angle α versus wavenumber k
Typical values: Zi = +1 (hydrogen plasma), γ = 2.

– Ion acoustic waves, in the presence of 2 electron populations:

– Electron acoustic waves (+ cold electrons):
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Stability profile (DAW): Angle α versus wavenumber k
Typical values: Zd/Zi ≈ 103, Te/Ti ≈ 10, nd,0/ni,0 ≈ 10−3, γ = 2.

– Negative dust : s = −1; cold (σ = 0) vs. warm (σ 6= 0) fluid:
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Stability profile (DAW): Angle α versus wavenumber k
Typical values: Zd/Zi ≈ 103, Te/Ti ≈ 10, nd,0/ni,0 ≈ 10−3, γ = 2.

– Negative dust : s = −1; cold (σ = 0) vs. warm (σ 6= 0) fluid:

– The same plot for positive dust (s = +1):

www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 48

4b. Localized envelope excitations (solitons)

o The NLSE:

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0

accepts various solutions in the form: ψ = ρ eiΘ ;
the total electric potential is then: φ ≈ ε ρ cos(kr− ωt+ Θ) where the
amplitude ρ and phase correction Θ depend on ζ, τ .
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4b. Localized envelope excitations (solitons)

o The NLSE accepts various solutions in the form: ψ = ρ eiΘ ;
the total electric potential is then: φ ≈ ε ρ cos(kr− ωt+ Θ) where the
amplitude ρ and phase correction Θ depend on ζ, τ .

o Bright–type envelope soliton (pulse):

ρ = ρ0 sech
(
ζ − v τ

L

)
, Θ =

1
2P

[
v ζ − (Ω +

1
2
v2)τ

]
. (8)

L =
√

2P
Q

1
ρ0

This is a
propagating
(and oscillating)
localized pulse:
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Propagation of a bright envelope soliton (pulse)
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Propagation of a bright envelope soliton (pulse)

Cf. electrostatic plasma wave data from satellite observations:

(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)] )
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Propagation of a bright envelope soliton (continued...)
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Propagation of a bright envelope soliton (continued...)
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Propagation of a bright envelope soliton (continued...)

Rem.: Time-dependent phase → breathing effect (at rest frame):
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Localized envelope excitations

o Dark–type envelope solution (hole soliton):

ρ = ±ρ1

[
1− sech2

(
ζ − vτ

L′

)]1/2

= ±ρ1 tanh
(
ζ − v τ

L′

)
,

Θ =
1

2P

[
v ζ −

(
1
2
v2 − 2PQρ2

1

)
τ

]

L′ =

√
2
∣∣P
Q

∣∣ 1
ρ1

(9)

This is a
propagating
localized hole
(zero density void):
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Localized envelope excitations

o Grey–type envelope solution (void soliton):

ρ = ±ρ2

[
1− a2 sech2

(
ζ − v τ

L′′

)]1/2

Θ = ...

L′′ =

√
2
∣∣P
Q

∣∣ 1
aρ2

(10)

This is a
propagating
(non zero-density)
void:
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5. (Part B): Focusing on 1d DP crystals:

[Figure from: S. Takamura et al., Phys. Plasmas 8, 1886 (2001).]
www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 58

Focusing on 1d DP crystals: known linear modes.

o Longitudinal Dust Lattice (LDL) mode:

* Horizontal oscillations (∼ x̂): cf. phonons in atomic chains;
* Acoustic mode: ω(k = 0) = 0;
* Restoring force provided by electrostatic interactions.

o Transverse Dust Lattice (TDL) mode:

* Vertical oscillations (∼ ẑ);
* Optical mode:

ω(k = 0) = ωg 6= 0
(center of mass motion);

* Single grain vibrations (propagating ∼ x̂ for k 6= 0): Restoring force
provided by the sheath electric potential (and interactions).

o Transverse (∼ ŷ, in-plane, optical) d.o.f. suppressed.
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Model Hamiltonian:

H =
∑
n

1
2
M

(
drn
dt

)2

+
∑
m6=n

Uint(rnm) + Φext(rn)

where:

– Kinetic Energy (1st term);

– Uint(rnm) is the (binary) interaction potential energy ;

– Φext(rn) accounts for ‘external’ force fields:
may account for confinement potentials and/or sheath electric forces, i.e.

Fsheath(z) = −∂Φ/∂z .

Q.: Nonlinearity: Origin: where from ? Consequence(s) ?
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Nonlinearity: Where does it come from?

o (i) Interactions between grains: Intrinsically anharmonic!

* Electrostatic (e.g. Debye), long-range, screened (r0/λD ≈ 1); typically:

UDebye(r) =
q2

r
exp (−r/λD) .

* Expanding Upot(rnm) near equilibrium:

∆xn = xn − xn−m = mr0, ∆zn = zn − zn−m = 0

one obtains:

Unm(r) ≈ 1
2
Mω2

L,0(∆xn)
2 +

1
2
Mω2

T,0(∆zn)
2

+
1
3
u30(∆xn)3 +

1
4
u40(∆xn)4 + ...+

1
4
u04(∆zn)4 + ...

+
1
2
u12(∆xn)(∆zn)2 +

1
4
u22(∆xn)2(∆zn)2 + ...
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Nonlinearity: Where from? (continued ...)

o (ii) Mode coupling also induces non linearity:
anisotropic motion, not confined along one of the main axes (∼ x̂, ẑ).

[cf. A. Ivlev et al., PRE 68, 066402 (2003); I. Kourakis & P. K. Shukla, Phys. Scr. (2004)]
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Nonlinearity: Where from? (continued ...)
o (iii) Sheath environment: anharmonic vertical potential:

Φ(z) ≈ Φ(z0) +
1
2
Mω2

g(δzn)
2 +

1
3
Mα (δzn)3 +

1
4
Mβ (δzn)4 + ...

cf. experiments [Ivlev et al., PRL 85, 4060 (2000); Zafiu et al., PRE 63 066403 (2001)];
δzn = zn − z(0); α, β, ωg are defined via E(z), [B(z)]† and Q(z);
(in fact, functions of n and P ) [† V. Yaroshenko et al., NJP 2003; PRE 2004]

Source: Sorasio et al. (2002).
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Overview: Localized excitations in 1d dust (Debye) crystals

o B1. Transverse degree of freedom (∼ ẑ): envelope solitons, breathers
(continuum theory)

o B2. Longitudinal d.o.f. (∼ x̂): asymmetric envelope solitons, ...

o B3. Longitudinal solitons: Korteweg-deVries (KdV) vs. Boussinesq
theories, ...

→ Appendix

o B4. Discrete Breathers (Intrinsic Localized Modes).

→ Appendix
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B1. Transverse oscillations
The (linear) vertical n−th grain displacement δzn = zn − z(0) obeys (*):

d2(δzn)
dt2

+ν
d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn = 0 (11)

o TDL eigenfrequency:

ωT,0 =
[
−qU ′(r0)/(Mr0)

]1/2 = ω2
DL exp(−κ) (1 + κ)/κ3

(for Debye interactions); κ = r0/λD is the lattice parameter ;

o ωDL = [q2/(Mλ3
D)]1/2 is the characteristic DL frequency scale;

o λD is the Debye length.

(*) [Vladimirov, Shevchenko and Cramer, PRE 1997]
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Transverse oscillations (linear)
The (linear) vertical n−th grain displacement δzn = zn − z(0) obeys

d2(δzn)
dt2

+ν
d(δzn)
dt

+ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn = 0 (12)

o Neglect dissipation, i.e. set ν = 0 in the following;

o Continuum analogue: δzn(t) → u(x, t), where

∂2u

∂t2
+ c2T

∂2u

∂x2
+ ω2

g u = 0

where cT = ωT,0 r0 is the transverse “sound” velocity.
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Transverse oscillations (linear, “undamped”)
The (linear) vertical n−th grain displacement δzn = zn − z(0) obeys

d2(δzn)
dt2

+ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn = 0 (13)

Optical dispersion relation

(backward wave, vg < 0) †:

ω2 = ω2
g−4ω2

T,0 sin2
(
kr0/2

)

† Cf. experiments: T. Misawa et al., PRL 86, 1219 (2001); B. Liu et al., PRL 91, 255003 (2003).

www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 67

What if nonlinearity is taken into account?

d2δzn
dt2

+ν
d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn

+α (δzn)2 + β (δzn)3 = 0 . (14)
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What if nonlinearity is taken into account?

d2δzn
dt2

+ν
d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn

+α (δzn)2 + β (δzn)3 = 0 . (15)

* Intermezzo: The mechanism of wave amplitude modulation:
The amplitude of a harmonic wave may vary in space and time:

→
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What if nonlinearity is taken into account?
d2δzn
dt2

+ν
d(δzn)
dt

+ ω2
T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2

g δzn

+α (δzn)2 + β (δzn)3 = 0 . (16)

* Intermezzo: The mechanism of wave amplitude modulation:
The amplitude of a harmonic wave may vary in space and time:

→
This modulation (due to nonlinearity) may be strong enough to lead to wave
collapse or formation of envelope solitons:

→ ?
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Large amplitude oscillations - envelope structures
A reductive perturbation (multiple scale) technique, viz.

t→ {t0, t1 = εt, t2 = ε2t, ...}, x→ {x0, x1 = εx, x2 = ε2x, ...}

yields (ε� 1; damping omitted):

δzn ≈ ε (Aeiφn + c.c.) + ε2α

[
−2|A|2

ω2
g

+
(
A2

3ω2
g

e2iφn + c.c.
)]

+ ...

Here,

o φn = nkr0 − ωt is the (fast) TDLW carrier phase;

o the amplitude A(X,T ) depends on the (slow) variables

{X, T} = {ε(x− vgt), ε2t} .
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Transverse oscillations - the envelope evolution equation
The amplitude A(X,T ) obeys the nonlinear Schrödinger equation (NLSE):

i
∂A

∂T
+ P

∂2A

∂X2
+Q |A|2A = 0 , (17)

where
o The dispersion coefficient (→ see dispersion relation)

P =
1
2
d2ωT (k)
dk2

= ...

is negative/positive for low/high values of k.

o The nonlinearity coefficient is Q =
[
10α2/(3ω2

g)− 3β
]
/2ω.

o Cf.: known properties of the NLS Eq. (cf. previous part).

[I. Kourakis & P. K. Shukla, Phys. Plasmas, 11, 2322 (2004); also PoP, 11, 3665 (2004).]
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Modulational stability analysis & envelope structures
o PQ > 0: Modulational instability of the carrier, bright solitons:

→ TDLWs: possible for short wavelengths i.e. kcr < k < π/r0.

Rem.: Q > 0 for all known experimental values of α, β.
[Ivlev et al., PRL 85, 4060 (2000); Zafiu et al., PRE 63 066403 (2001)]

Source: G. Sorasio et al. (2002).
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Modulational stability analysis & envelope structures
o PQ > 0: Modulational instability of the carrier, bright solitons:

→ TDLWs: possible for short wavelengths i.e. kcr < k < π/r0.
o PQ < 0: Carrier wave is stable, dark/grey solitons:

→ TDLWs: possible for long wavelengths i.e. k < kcr.
Rem.: Q > 0 for all known experimental values of α, β
[Ivlev et al., PRL 85, 4060 (2000); Zafiu et al., PRE 63 066403 (2001)] (end of TDL).
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B2. Longitudinal excitations
The (linearized) equation of longitudinal (∼ x̂) motion reads (*):

d2(δxn)
dt2

+ν
d(δxn)
dt

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

– δxn = xn − nr0: longitudinal dust grain displacements

– Acoustic dispersion relation:

ω2 = 4ω2
L,0 sin2

(
kr0/2

)
≡ ω2

L(k)

– LDL eigenfrequency: ω2
0,L = U ′′(r0)/M = 2ω2

DL exp(−κ) (1 + κ+ κ2/2)/κ3

(∗)

(∗) for Debye interactions; Rem.: ωDL = [q2/(Mλ3
D)]1/2.

– Neglect damping in the following, viz. ν → 0 .

(*) [Melandsø PoP 1996, Farokhi et al, PLA 1999]
www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 75

Longitudinal excitations (linear, “undamped”)
The (linearized) equation of longitudinal motion reads:

d2(δxn)
dt2

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

or, in the continuum approximation:

∂2(δxn)
∂t2

− c2L
∂2(δxn)
∂t2

= 0

(cL = ω0,Lr0)
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Longitudinal excitations (nonlinear).
The nonlinear equation of longitudinal motion reads:

d2(δxn)
dt2

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

−a20

[
(δxn+1 − δxn)2 − (δxn − δxn−1)2

]
+ a30

[
(δxn+1 − δxn)3 − (δxn − δxn−1)3

]
(18)

– δxn = xn − nr0: longitudinal dust grain displacements

– Cf. Fermi-Pasta-Ulam (FPU) problem: anharmonic spring chain model:

Uint(r) ≈
1
2
Mω2

0,Lr
2 − 1

3
Ma20r

3 +
1
4
Ma30r

4 .
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Longitudinal envelope structures.
The reductive perturbation technique (cf. above) now yields:

δxn ≈ ε
[
u

(1)
0 + (u(1)

1 eiφn + c.c.)
]
+ ε2 (u(2)

2 e2iφn + c.c.) + ... ,

[Harmonic generation; Cf. experiments: K. Avinash PoP 2004].
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Longitudinal envelope structures.
The reductive perturbation technique (cf. above) now yields:

δxn ≈ ε
[
u

(1)
0 + (u(1)

1 eiφn + c.c.)
]
+ ε2 (u(2)

2 e2iφn + c.c.) + ... ,

where the amplitudes obey the coupled equations:

i
∂u

(1)
1

∂T
+ PL

∂2u
(1)
1

∂X2
+ Q0 |u(1)

1 |2u(1)
1 +

p0k
2

2ωL
u

(1)
1

∂u
(1)
0

∂X
= 0 ,

∂2u
(1)
0

∂X2
= − p0k

2

v2
g,L − c2L

∂

∂X
|u(1)

1 |2 ≡ R(k)
∂

∂X
|u(1)

1 |2

– Q0 = −k2

2ω

(
q0 k

2 + 2p20
c2
L
r20

)
; vg,L = ωL

′(k); {X,T}: slow variables;

– p0 = −U ′′′(r0)r30/M ≡ 2a20r
3
0 , q0 = U ′′′′(r0)r40/(2M) ≡ 3a30r

4
0.

– R(k) > 0, since ∀ k vg,L < ωL,0 r0 ≡ cL (subsonic LDLW envelopes).
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Asymmetric longitudinal envelope structures.
– The system of Eqs. for u(1)

1 , u(1)
0 may be combined into a closed (NLSE)

equation (for A = u
(1)
1 , here);

i
∂A

∂T
+ P

∂2A

∂X2
+Q |A|2A = 0

– P = PL = ω′′L(k)/2 < 0;

– Q > 0 (< 0) prescribes stability (instability) at low (high) k.
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Asymmetric longitudinal envelope structures.
– The system of Eqs. for u(1)

1 , u(1)
0 may be combined into a closed (NLSE)

equation (for A = u
(1)
1 , here);

i
∂A

∂T
+ P

∂2A

∂X2
+Q |A|2A = 0

– P = PL = ω′′L(k)/2 < 0;

– Q > 0 (< 0) prescribes stability (instability) at low (high) k.

– Envelope excitations are now asymmetric:

(at high k, i.e. PQ > 0).
www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 81

Asymmetric longitudinal envelope structures.

(at high k)

(at low k)

[I. Kourakis & P. K. Shukla, Phys. Plasmas, 11, 1384 (2004).] (end of L-Part).
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6. Conclusions

o Amplitude Modulation (due to carrier self-interaction) is an inherent feature
of oscillatory mode dynamics in dynamical systems;

o modulated waves may undergo spontaneous modulational instability ; this is
an intrinsic feature of nonlinear dynamics, which ...

o ... may lead to the formation of envelope localized structures (envelope
solitons), in account of energy localization phenomena observed in Nature;

o Modulated electrostatic (ES) plasma wave packets observed in Space and
in the lab, in addition to dust-lattice excitations, may be modelled this way.

o The RP analytical framework permits modelling of these mechanisms in
terms of intrinsic physical (plasma) parameters.

→ an efficient model for a weakly nonlinear dynamical system in {x, t}.
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Appendix: DP – Dusty Plasmas (or Complex Plasmas):
definition and characteristics

o Ingredients:
– electrons e− (charge −e, mass me),
– ions i+ (charge +Zie, mass mi), and
– charged micro-particles ≡ dust grains d (most often d−):

charge Q = ±Zde ∼ ±(103 − 104) e,
mass M ∼ 109mp ∼ 1013me,
radius r ∼ 10−2 µm up to 102 µm.
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Dust laboratory experiments on Earth:
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Earth experiments are
subject to gravity:
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Earth experiments are
subject to gravity:

thus ...: Dust experiments in ISS (International Space Station)

(Online data from: Max Planck Institüt - CIPS).
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B3. Longitudinal soliton formalism.
Q.: A link to soliton theories: the Korteweg-deVries Equation.

– Continuum approximation, viz. δxn(t) → u(x, t).

– “Standard” description: keeping lowest order nonlinearity,

ü+ν u̇− c2L uxx −
c2L
12 r

2
0 uxxxx = − p0 ux uxx

cL = ωL,0 r0; ωL,0 and p0 were defined above.

– Let us neglect damping (ν → 0), once more.

– For near-sonic propagation (i.e. v ≈ cL), slow profile evolution in time τ and
defining the relative displacement w = uζ, one obtains the KdV equation:

wτ − awwζ + bwζζζ = 0

(for ν = 0); ζ = x− vt; a = p0/(2cL) > 0; b = cLr
2
0/24 > 0.

– This KdV Equation yields soliton solutions, ... (→ next page)
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The KdV description
The Korteweg-deVries (KdV) Equation

wτ − awwζ + bwζζζ = 0

yields compressive (only, here) solutions, in the form (here):

w1(ζ, τ) = −w1,msech
2

[
(ζ − vτ − ζ0)/L0

]
– This solution is a negative pulse for w = ux,
describing a compressive excitation for the displacement δx = u,
i.e. a localized increase of density n ∼ −ux.
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The KdV description
The Korteweg-deVries (KdV) Equation

wτ − awwζ + bwζζζ = 0

yields compressive (only, here) solutions, in the form (here):

w1(ζ, τ) = −w1,msech
2

[
(ζ − vτ − ζ0)/L0

]
– Pulse amplitude: w1,m = 3v/a = 6vv0/|p0|;

– Pulse width: L0 = (4b/v)1/2 = [2v2
1r

2
0/(vv0)]

1/2;

– Note that: w1,mL
2
0 = constant (cf. experiments)†.

– This solution is a negative pulse for w = ux,
describing a compressive excitation for the displacement δx = u,
i.e. a localized increase of density n ∼ −ux.
– This is the standard treatment of dust-lattice solitons today ... †

† F. Melandsø 1996; S. Zhdanov et al. 2002; K. Avinash et al. 2003; V. Fortov et al. 2004.
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Characteristics of the KdV theory
The Korteweg - deVries theory, as applied in DP crystals:

– provides a correct qualitative description of compressive excitations
observed in experiments;

– benefits from the KdV “artillery” of analytical know-how obtained throughout
the years: integrability, multi-soliton solutions, conservation laws, ... ;
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Characteristics of the KdV theory
The Korteweg - deVries theory, as applied in DP crystals:

– provides a correct qualitative description of compressive excitations
observed in experiments;

– benefits from the KdV “artillery” of analytical know-how obtained throughout
the years: integrability, multi-soliton solutions, conservation laws, ... ;

but possesses a few drawbacks:

– approximate derivation: (i) propagation velocity v near (longitudinal) sound
velocity cL, (ii) time evolution terms omitted ‘by hand’, (iii) higher order
nonlinear contributions omitted;

– only accounts for compressive solitary excitations (for Debye interactions);
nevertheless, the existence of rarefactive dust lattice excitations is, in
principle, not excluded.
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Longitudinal soliton formalism (continued)
Q.: What if we also kept the next order in nonlinearity ?
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Longitudinal soliton formalism (continued)
Q.: What if we also kept the next order in nonlinearity ?

– “Extended” description: :

ü − c2L uxx −
c2L
12
r20 uxxxx = − p0 ux uxx+ q0 (ux)2 uxx

cL = ωL,0 r0; ωL,0, p0 ∼ −U ′′′(r) and q0 ∼ U ′′′′(r) (cf. above).

Rq.: q0 is not negligible, compared to p0! (instead, q0 ≈ 2p0 practically, for r0 ≈ λD !)
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Longitudinal soliton formalism (continued)
Q.: What if we also kept the next order in nonlinearity ?

– “Extended” description: :

ü + ν u̇− c2L uxx −
c2L
12
r20 uxxxx = − p0 ux uxx+ q0 (ux)2 uxx

cL = ωL,0 r0; ωL,0, p0 and q0 were defined above.

– For near-sonic propagation (i.e. v ≈ cL), and defining the relative
displacement w = uζ, one obtains the E-KdV equation:

wτ − awwζ + â w2wζ+ bwζζζ = 0 (19)

(for ν = 0); ζ = x− vt; a = p0/(2cL) > 0; b = cLr
2
0/24 > 0;

â = q0/(2cL) > 0.
www.tp4.rub.de/∼ioannis/conf/200511-AUTh-oral.pdf Aristotle University of Thessaloniki, Greece, 3 Nov. 2005



I. Kourakis, Reductive perturbation method ... 96

Characteristics of the EKdV theory
The extended Korteweg - deVries Equation:
– accounts for both compressive and rarefactive excitations;

(horizontal grain displacement u(x, t))
– reproduces the correct qualitative character of the KdV solutions (amplitude
- velocity dependence, ... );
– is previously widely studied, in literature;
Still, ...
– It was derived under the assumption: v ≈ cL.
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One more alternative: the Boussinesq theory
The Generalized Boussinesq (Bq) Equation (for w = ux):

ẅ − c2Lwxx = c2Lr
2
0

12 wxxxx − p0
2 (w2)xx+ q0

2 (w3)xx
– predicts both compressive and rarefactive excitations;
– reproduces the correct qualitative character of the KdV solutions (amplitude
- velocity dependence, ... );
– has been widely studied in literature;
and, ...
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One more alternative: the Boussinesq theory
The Generalized Boussinesq (Bq) Equation (for w = ux):

ẅ − c2Lwxx = c2Lr
2
0

12 wxxxx − p0
2 (w2)xx+ q0

2 (w3)xx
– predicts both compressive and rarefactive excitations;
– reproduces the correct qualitative character of the KdV solutions (amplitude
- velocity dependence, ... );
– has been widely studied in literature;
and, ...

– relaxes the velocity assumption, i.e. is valid ∀ v > cL.

(end of L-Part 4.)
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B4. Transverse Discrete Breathers (DB)
o DBs are highly discrete oscillations (Intrinsic Localized Modes, ILMs);

o Looking for DB solutions in the transverse direction, viz.
d2un
dt2

+ ω2
T,0 (un+1 + un−1 − 2un) + ω2

g δzn + αu2 + β u3 = 0

one obtains the bright-type DB solutions (localized pulses):

as well as the dark-type excitations (holes; Kivshar dark modes):

o Similar modes may be sought in the longitudinal direction.
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Transverse Discrete Breathers (DB)

o Existence and stability criteria still need to be examined.

o It seems established that DBs exist if the non-resonance criterion:

nωB 6= ωk ∀n ∈ N

is fulfilled, where:

– ωB is the breather frequency ;

– ωk is the linear (“phonon”) frequency (cf. dispersion relation).

o If ωB (or its harmonics) enter(s) into resonance with the linear spectrum ωk,
discrete oscillations will decay into a “sea” of linear lattice waves.

o The DB existence condition is satisfied in all known lattice wave
experiments.
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