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1. Introduction

Amplitude modulation (AM) is a widely known nonlinear mech-
anism dominating wave propagation in dispersive media [1, 2]; it
is related to mechanisms such as modulational instability (MI),
harmonic generation and energy localization , possibly leading to
soliton formation. The study of AM generically relies on nonlinear
Schrödinger (NLS) type equations [3]; a set of coupled NLS (CNLS)
equations naturally occurs when interacting modulated waves are
considered. CNLS equations are encountered in physical contexts
as diverse as electromagnetic wave propagation in nonlinear me-
dia [4] optical fibers [5, 6], plasma waves [7], transmission lines [8],
and left-handed (negative refraction index) metamaterials (LHM)
[9, 10]. A similar paradigm (Gross-Pitaevskii equations) is em-
ployed in the mean-field statistical mechanical description of bo-
son gases, to model the dynamics of Bose-Einstein condensates
(formed at ultra low temperatures) [11, 12, 13].
Here, we shall investigate the (conditions for the) occurrence of MI
in a pair of CNLS equations, from first principles, attempting to
keep generality to a maximum (i.e. making no a priori simplify-
ing hypothesis, e.g. on the magnitude and/or the sign of various
parameters involved). A set of stability criteria are derived, to be
tailor fit to any particular problem of coupled wave propagation.
Details omitted here can be found in Ref. [14].
The formalism presented here applies to nonlinear optics [15], cou-
pled BECs [13], left-handed media (LHM) [10], in H-bonded mate-
rials [16] and in various other contexts, where coupled wave prop-
agation is of relevance.

2. The model: an asymmetric pair of CNLS Equations

Let us consider two coupled waves propagating in a dispersive
and nonlinear medium. The wave functions (j = 1, 2) are
ψj exp i(kjr − ωjt) + c.c. (complex conjugate), where the carrier
wave number kj and frequency ωj of each wave are related by a
dispersion relation function ωj = ωj(kj). The nonlinearity of the
medium is manifested via a slow modulation of the wave ampli-
tudes, in time and space, say along the x−axis. The amplitude
evolution is described by the coupled NLS equations (CNLSE)
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The group velocity vg,j and the group-velocity-dispersion (GVD)
term Pj corresponding to the j−th wave is related to the dis-
persion curve via vg,j = ω′and Pj = ω′′/2 (in 2- or 3-D, the
prime denotes differentiation in the direction of modulation, viz.
vg,j = ∂ωj/∂kx and Pj = ∂2ωj/2∂k

2
x). The nonlinearity and

coupling terms, Qjj and Qjj′, express the effects of carrier self-
modulation and interaction among amplitudes, respectively. No
hypothesis holds, a priori, on the sign and/or the magnitude of
these coefficients, although specific simplifying assumptions may be
relevant in certain problems. If(f) vg,1 = vg,2, the corresponding
terms are eliminated via a Galilean transformation. The combined
assumption P1 = P2, Q11 = Q22 and Q12 = Q21 often holds
[?, 15]. The case P1 = P2, Q11 = Q21 and Q12 = Q22 has also
appeared, for EM waves in left-handed media (LHM) [9, 10].

3. Modulational (in)stability of single waves

A single modulated wave ψ, obeying a (single) NLS Eq., is modu-
lationally stable (unstable) if PQ < 0 (PQ > 0) [1, 2, 3]. Indeed,
a (linear) stability analysis around the plane wave (Stokes’) solu-

tion ψ(x, t) = ψ0 e
iQ|ψ0|2t shows that a linear modulation, viz.

ψ0 → ψ0 + ε exp i(Kx− Ωt), obeys the dispersion relation
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which exhibits a purely growing unstable mode if K ≤ Kcr,0 =

(2Q/P )1/2 |ψ0| (only if PQ > 0). The growth rate σ = ImΩ
attains a maximum value σmax = |Q| |ψ0|2 at Kcr,0/

√
2. For

PQ < 0, the wave is stable to external perturbations.

4. Coupled waves: harmonic dispersion relation

Seeking an equilibrium state in the form ψj = ψj0 exp[iϕj(t)],
one finds the monochromatic solution ϕj(t) = Ωj0t, where Ωj0 =

Qjjψ
2
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2
l0 (for j 6= l = 1, 2) Considering a small perturba-

tion, we take ψj = (ψj0 + εψj1) exp[iϕj(t)] (where ε � 1) into
Eqs. (1), where ψj1 = ψj1,0 exp[i(Kx − Ωt)] (K and Ω are the
wave vector and the frequency of the perturbation).
One is thus led to a generalized dispersion relation in the form:[
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2 (for l 6= j = 1 or 2).

5. Wave envelopes at equal group velocities: vg,1 = vg,2

For vg,1 = vg,2, one obtains the (reduced) dispersion relation
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where T = TrM ≡ Ω2
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are the trace and the determinant, respectively, of the matrix M.
Equation (4) admits the solution
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Stability is ensured (for all wavenumbers K) if (and only if) both
of the (two) solutions of (4), say Ω2

±, are positive (real) numbers.
This is tantamount to the requirements (simultaneously satisfied):

T > 0, D > 0 and ∆ = T 2 − 4D > 0 .

(i) 1st road to MI: The positivity of the trace T :
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is ensured only if q1 ≡
∑
j PjQjj|ψj0|2 < 0 . Thus, absolute sta-

bility (∀ψj0 andK) requires

P1Q11 < 0 and P2Q22 < 0 (Stability Criterion 1, SC1) .
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;

this is always possible for a sufficiently large perturbation ampli-
tude |ψ20| if, say, P2Q22 > 0 (even if P1Q11 < 0). Therefore,
only a pair of two individually stable waves can be stable; the
sole presence of a single unstable wave may de-stabilize its
counterpart (even if the latter would be individually stable).

(ii) 2nd road to MI: The positivity of the determinant D depends

on the quantities q2 ≡
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condition D > 0 (∀K,ψj0) requires that q2 < 0 and q3 > 0. If
the former inequality alone is not satisfied (i.e. q3 > 0 and q2 > 0),
then the two roots of D, K2

D,1/2
, will be positive (0 < K2

D,1 <

K2
D,2) and the wave pair will be unstable to a perturbation with

intermediate K, i.e. K2
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non-zero, unstable K “window”). If q3 < 0 (regardless of q2), then
the two roots K2
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will be of opposite sign, with K2
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D,2, and the wave pair will be unstable if K2 < K2

D,2.

Absolute stability requires, in addition to (SC1) above (hence q2 <
0 ∀ψj0 andK), that q3 > 0, i.e.

P1P2(Q11Q22−Q12Q21) > 0 (Stability Criterion 2, SC2) .

In the case where P1 = P2 (e.g. in symmetric BEC pairs [13],
where Pj = ~2/2m), this criterion reduces to:

Q11Q22 −Q12Q21 > 0 (Stability Criterion 2′, SC2′) .

Different combinations (in terms of the amplitude ratio |ψ20|/|ψ10|)
prescribing (in)stability exist, yet are omitted here for brevity [13].

(iii) 3rd road to MI: The last stability condition requires the pos-

itivity of the discriminant quantity ∆ = T 2 − 4D (automatically
ensured if D < 0). Let us here assume that D > 0, i.e. that
criterion (C2) is satisfied. We consider the inequality:
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Two cases may be distinguished here.
If P1 = P2 = P , this condition reduces to d0 > 0. Absolute
stability is thus only ensured if

Q12Q21 > 0 (Stability Criterion 3′, SC3′) .

See that (C3) is always fulfilled for a symmetric wave pair. If (C3)
is violated, the wave pair will be unstable in a range of parameter
values, to be determined by solving d′0 < 0.
Let us assume that P1 > P2 (no loss of generality implied). Since
∆′′ = d2

2 − 4d4d0 = −64P1P2Q12Q21(P
2
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20, the sta-

bility condition ∆ > 0 is satisfied for all K,ψj0 if(f) ∆′′ < 0, i.e.

P1P2Q12Q21 > 0 (Stability Criterion 3, SC3) .

(this is always true for symmetric wave pairs).
If, on the other hand, q5 ≡ P1P2Q12Q21 < 0, then one needs
to investigate the signs of d2 = K2

∆,1 + K2
∆,2 ≡ q6 and d0 =

K2
∆,1K

2
∆,2 ≡ q7, in terms of the amplitudes ψj0. The only pos-

sibility for stability (∀K) is provided by the combination d2 < 0
and d0 > 0 (hence K2

∆,1 < K2
∆,2 < 0). The possibility for insta-

bility arises either for K2
∆,1 < 0 < K2 < K2

∆,2 (if d0 < 0), or for

0 < K2
∆,1 < K2 < K2

∆,2 (if d0 > 0 and d2 > 0). As above, we

may thus obtain an instability “window” far from K = 0.

The stability criteria (SC1-3) may be summarized as

P1Q11 < 0 and 0 < P1P2Q12Q21 < P1P2Q11Q22 ,

which is the generalized stability criterion to be retained.
The above (in)stability regions and wavenumber thresholds need to
be determined in detail for any physical problem considered.
MI is manifested if either of the above conditions are violated.
If (SC1) or (SC2) is violated, then one (at least) of the solutions
of (3) is negative [cf. (6)]; the maximum instability growth rate is

then given by σ ≡
√
−Ω2

−, and occurs in the ranges [0, Kcr,1] - cf.

(SC1) - or, either [0, KD,2] or [KD,1, KD,2] - cf. (SC2).

If (SC3) is violated, all solutions of (3) are complex, viz. Im(Ω2
±) =

±
√
|∆|/2, so σ = Max{Im(Ω±)} = Max{Im(Ω2

±)1/2}. This is
possible either for [0, K∆,2] or [K∆,1, K∆,2].
Finally, up to three unstable wavenumber “windows” may exist,
either partially superposed, or distinct from each other.

6. Different group velocities: vg,1 6= vg,2

The role of the group velocity difference may be investigated qual-
itatively, by casting Eq. (3) in the form: f1(x) = f2(x), where

f1(x) = (x− x1)
2 + A , f2(x) =

C

(x− x2)2 +B
(7)

and x = Ω, xj = Kvg,j, A = −Ω2
1 = −M11, B = −Ω2

2 = −M22,

and C = Ω4
c = M12M21. The stability profile is determined by

the number of real solutions of this equation: for stability, we need
4 real solutions; otherwise, MI occurs and the (imaginary parts of
the) remaining (complex) solutions determine its growth rate.
See that A < 0 (B < 0) implies that wave 1 (2) alone is stable.
Various parameter combinations exist; see in [14]b for details.
Among other results, one finds that:
(i) a group velocity misfit destabilizes a stable pair of stable waves:

Figure 1. The functions f1(x) (parabola) and f2(x) (rational function, two

vertical asymptotes) are depicted, vs. x, for A = B = −1, C = 0.5 (so that

D = AB − C = +0.5 > 0), x1 = x2 = 0 (equal group velocities).

(ii) A pair of unstable waves is always unstable:

Figure 2. The functions f1(x) and f2(x) are depicted, for A = B = +1, C = 0.5

(so that D = AB − C > 0), and x1 = x2 = 0. At most 2 intersection points

may occur by translation, either vertically (A,B) or horizontally (vg,1/2).

(iii) A stable pair of stable-unstable waves may always be desta-
bilized by a group velocity mismatch, while
an unstable pair of (stable-stable) waves remains unstable:

Figure 3. (a) Stable pair of stable-unstable wave pair (A = −1.48, B = +1,

C = −1.5, and x1 = x2 = 0); (b) Unstable pair of Stable-stable waves (A =

B = −1, C = 1.5 (so that D = AB − C = −0.5 < 0), x1 = x2 = 0).
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