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Abstract

The nonlinear amplitude modulation of electrostatic wave packets propagating
in a three-component plasma is investigated, by employing a two-fluid plasma
description. Focus is made on electron-positron-ion (e-p-i) plasmas; alternatively,
the model describes pair-ion (eg. fullerene) plasmas contaminated by a uniform
and stationary minority charged particle species (e.g. defects, or dust particulates).
Wave propagation parallel to the external magnetic field is considered.

1. Introduction. Pair plasmas (p.p.), i.e. plasmas consisting of equal mass and
opposite charge sign particles, feature properties which do not exist in ordinary (e-
i) plasmas. For instance, since the positively and negatively charged particles in p.p.
respond on the same frequency scale (unlike electrons and heavy ions), ion-acoustic
waves have no counterpart in electron-positron (e-p) plasmas, where the electrostatic
(ES) wave dispersion may be of high-frequency parabolic (Langmuir-like) type [1-3], and
neither does Faraday rotation. Recently, the production of pair fullerene-ion plasmas in
laboratory [3] has enabled experimental studies of pair plasmas rid of intrinsic problems
involved in electron-positron plasmas, namely pair recombination processes and strong
Landau damping.

In real, e.g. astrophysical contexts, e-p plasmas may be enriched by the additional
presence of positive ions. Electron-positron-ion (e-p-i) plasmas appear in the early uni-
verse, in active galactic nuclei (AGN) and in pulsar magnetospheres, and may also be
created in laboratory (see Refs. in: [4]). Weakly nonlinear low-frequency ES modes
in e-p-i plasmas were considered in [5]. Here, we investigate high-frequency oscillations
of (light) electrons and positrons (or pair ions) against a neutralizing background of
(heavier) ions which, given the frequency range of interest, may be considered immobile.

2. The model. We consider a collisionless plasma, consisting of two inertial species,
say 1 and 2, of opposite charge q1/2 = s1/2Zq (here s1 = −s2 = +1) and equal mass
m1/2 = m, and a fixed background of heavier ions (mass mi, charge qi = +Zie); e is the
(absolute) electron charge. In specific, 1 and 2 may represent electrons and positrons,
in e-p-i plasmas, or heavier C+

60 ions in a pair fullerene-ion plasma, where a minority ion
species (e.g. defects) is present.

The (two) inertial dust fluids are described by the moment evolution equations
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where t and x are time and (1D) space variables and nα, vα and pα denote the density,
velocity and pressure, respectively, of species α = 1, 2 ≡ +,− (of charge sign sα = ±1).
The equation of state pα = γnαkBTα is assumed to hold, along with pα = Cnγ

α; the
specific heat ratio γ = (f + 2)/f (for f degrees of freedom) is here equal to 3; here, Tα

is the temperature of species α; kB is Boltzmann’s constant.
The electric potential φ obeys Poisson’s equation
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nsqs = 4πe[Z(n2 − n1) − Zini] , (2)

where n1(+) and n2(−) denote the positron (or positive ion) and electron (or negative ion)
density, respectively; the background ion density ni = ni,0 is constant. The rhs in Eq. (2)
cancels at equilibrium, due to the quasi-neutrality condition Z(n2,0 − n1,0) − Zini,0 = 0.

3. Perturbative analysis. The system of (5) Eqs. (1, 2) for the state vector S =
{n1, u1;n2, u2;φ} supports harmonic electrostatic waves in the form S = Ŝ exp[i(kr −
ωt)] + c.c. In order to study the variation (modulation) of the amplitude(s) Ŝj (here
j = 1, ..., 5) due to nonlinearity, we consider small deviations from the equilibrium state
S(0) = (n1,0, 0;n1,0, 0; 0)T , viz. S = S(0) + ǫS(1) + ǫ2S(2) + ..., where ǫ ≪ 1 is a smallness

parameter. We assume Sj(n) =
∑n

l=−n S
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∗
, for reality), allowing the amplitude(s) to depend on the stretched (slow)

coordinates X = ǫ(x− vg t) and T = ǫ2 t; here vg = ω′(k) is the wave’s group velocity.
The calculation, particularly lengthy yet straightforward, can be found in [4]; also

see [6] for details on the method, which essentially implements the generic reductive
perturbation method [7] for ES plasma waves.

The (dominant) first harmonic amplitudes are determined (to order ∼ ǫ1) as
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e.g. in terms of the potential correction φ
(1)
1 ≡ ψ. We have defined the density ratio

β = n+,0/n−,0, the sound speed cs = (kBT−/m)1/2, the temperature ratio σ = T+/T−,
and the defect- (background ion) density ratio δ = n3/n2 ≡ ni,0/n−,0; see that quasi-
neutrality imposes β = 1 − δZi/Z, implying n+ < n− for positive background ions, i.e.
Zi > 0, as implied here (the inverse would hold for Zi < 0); β = 1 (δ = 0) in p.p. [2].

The linear dispersion relation obtained in ∼ ǫ1 takes the form of a bi-quadratic
polynomial equation for ω. Two distinct real solutions are obtained for ω, which for
small wave number k values behave as

ω1 ≈ ±c0,Lk , ω2 ≈ ±(ω2
g + c20,Uk

2)1/2 , (3)

where we defined the characteristic speeds c0,L = cs[3β(1 + σβ)/(1 + β)]1/2 and c0,U =
cs[3(1+σβ3)/(1+β)]1/2 and the gap (cutoff) frequency ωg = ωp,−(1+β)1/2. The L(ower)
curve ω1 is an acoustic branch, while the U(pper) curve ω2 determines a Langmuir-like
optic mode. These results generalize the known dispersion relation for ES modes in pair
plasma [1, 3] (here recovered for β = σ = 1). A numerical investigation shows that
increasing the fixed ion species density (i.e. decreasing β) results in lower frequency in



Figure 1: Dispersion relation ω vs. k: effect of variation of β (left) and σ (right).
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Figure 2: (left) Bright-, (middle) black-, and (right) grey-type soliton solution of (4).

both modes (and, in fact, lower values of c0,U/L and ωg). On the other hand, for fixed β,
decreasing σ results in lower c0,U/L (but does not affect ωg); see Fig. 1.

The amplitudes of the 2nd and 0th (constant) harmonic corrections, S
(2)
j,2 and S

(2)
j,0 ,

are obtained in order ∼ ǫ2; the lengthy expressions are omitted for brevity.

4. Nonlinear amplitude evolution equation. In order ǫ3, a compatibility condition
is obtained, in the form of a nonlinear Schrödinger–type equation (NLSE)

i
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for the potential correction ψ. Both the dispersion coefficient P = ω′′(k)/2 and the
nonlinearity coefficient Q, due to carrier wave self-interaction, are lengthy functions of
k, σ and β, omitted here, for brevity; the exact expressions can be found in [4]. It may
be interesting to trace the behavior of P and Q for long wavelengths, i.e. for k ≪ λD

(= cs/ωp,−). For the lower branch, the coefficients behave as P ∼ −k and Q ∼ 1/k,
ensuring modulational stability (since PQ < 0: see in §5 below). For the upper branch,
P (k = 0) =cst., while Q ∼ k2: the optic-type upper mode is therefore unstable.

5. (In)stability profile & envelope localized excitations. The perturbed elec-
tric potential is ψ = ǫψ0 cos(kx − ωt + Θ) + O(ǫ2). It is known [8] that the evolution
of a modulated wave whose amplitude obeys Eq. (4) depends on the coefficient prod-
uct PQ. Eq. (4) supports the plane wave solution ψ = ψ0 exp(iQ|ψ0|

2T ); now, per-
turbing the amplitude as: ψ̂ = ψ̂0 + ǫ ψ̂1,0 cos (k̃X − ω̃T ), one obtains the dispersion

relation: ω̃2 = P k̃2 (P k̃2 − 2Q|ψ̂1,0|
2) . If PQ > 0, the amplitude ψ is unstable for

k̃ <
√

2Q/P |ψ̂1,0|. If PQ < 0, the amplitude ψ will be stable to external perturbations.



Figure 3: The ratio P/Q vs. k: lower (acoustic) mode β (left); upper mode (right).

This modulational instability mechanism is a well known energy localization mechanism
in nonlinear dispersive media.

Different localized envelope solutions of Eq. (4) (envelope solitons) exist; see in [6]
for a brief outline and analytical expressions (also Refs. therein for details). For PQ > 0,
bright envelope modulated wavepackets occur, i.e. localized envelope pulses confining
the carrier (see Fig. 2a). For PQ < 0, dark (dark (Fig. 2b) or grey (Fig. 2c) envelope
solitons exist, modelling a localized envelope hole (a void) amidst a uniform region.

6. Numerical analysis - conclusions. A numerical analysis shows that both modes
are sensitive to variations of the positive-to-negative-ion (or positron-to-electron) density
and temperature ratios, β and σ. The lower (acoustic) mode is stable for large wave-
lengths, and may propagate as a dark-type envelope soliton (a potential dip, or a void).
On the other hand, the upper (optic) one is modulationally unstable, and favors the
formation of bright-type envelope solitons (pulses). This behavior is depicted in Figs. 3.

These results may be of relevance in experimental [3] and astrophysical [9] contexts.
In specific, one may anticipate that the existence of a third minority species in pair
plasmas (e.g. defects, or dust) may be used to “tune” the stability of electrostatic
modes.
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