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Abstract

The parametric excitation of dust acoustic oscillations due to dust grain charge
fluctuations in a four-component plasma consisting of positive and negative inertial
dust grains and a thermalized (Maxwellian) background of electrons and ions is
investigated. Employing a two-fluid plasma description, and assuming a periodic
fluctuation of the dust charge Q, a Mathieu-type ordinary differential equation is
obtained for the dust number density, and analyzed via an averaging technique.

1. Introduction. Complex (dusty) plasmas (DPs) are characterized by the presence
of massive mesoscopic (micron-sized, typically) dust particulates, whose charge may vary
in time via a plethora of charging processes [1]. Although the electric charge residing
on the dust grains is mostly negative, due to the high electron mobility, positive and
negative dust coexistence is also witnessed in space and laboratory plasmas [2].

Here, we investigate the parametric excitation of dust acoustic oscillations due to
charge fluctuations in a DP featuring a coexistence of negative and positive dust charge.

2. The model. We consider an unmagnetized collisionless dusty plasma, consisting
of two dust grain species, of positive and negative charge qd± = ±Q and constant mass
md± = M , in addition to a thermalized (Maxwellian) background of electrons (mass me,
charge qe = −e) and ions (mass mi, charge qi = +Zie); e is the (absolute) electron charge.
The dust grain charge is considered to be a time-dependent variable, i.e. Q(t) = Zd(t)e.

The (two) cold inertial dust fluids are described by the density evolution equation

∂nd±

∂t
+ nd±

∂ud±

∂z
= 0 , (1)

where t and z are independent time and (one-dimensional) space variables and nd± and
vd± are density and velocity variables, respectively. The momentum equation(s) read

∂ud±

∂t
= ∓ Q

M

∂φ

∂z
, (2)

where the convective term was omitted. The electric potential φ obeys Poisson’s equation

∂2φ

∂z2
= −4π

4
∑

s(pecies)=1

nsqs = 4πe[(Zd(nd− − nd+) + ne − Zini] , (3)
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Figure 1: (a) and (b) x(t) vs. t; (c) phase space x(t)-x′(t); ω0 = 100γ = 2π and h = 0.1.

where ni and ne denote the ion and electron number density, respectively. The right-
hand side of Eq. (3) cancels at equilibrium, thanks to the charge neutrality condition
Zini0−ne0+Zd,0(nd+,0−nd−,0) = 0, where ns0, for s = i, e, d+/−, denotes the ion, electron
and dust (+/−) particle number density at equilibrium, respectively. We assume a
harmonic potential variation in space, characterized by a wave length λ ≡ 2π/k (and
a wave number k), i.e. φ(z, t) = φ̂(t) exp(ikz). Being much lighter than dust particles,
both electrons and ions are assumed to be in local thermodynamic equilibrium, so their
number densities, ne and ni, obey a Boltzmann distribution, viz. ne = ne0 exp(eφ/kBTe)
and ni = ni0 exp(−Zieφ/kBTi) .

3. Derivation of a Mathieu equation for dust fluctuations. Assuming a weak
potential value φ � {kBTe/e, kBTi/Zie}, and considering a harmonic dust charge fluctu-
ation, i.e. Zd = Zd0(1 + h cos γt)1/2 (where the real parameter h � 1 and the frequency
γ are real constants), Eqs. (1) to (3) are combined into a closed evolution equation for
the dust density, in the form

d2x

dt2
+ ω2

0(1 + h cos γt) x = 0 , (4)

where we have defined the dimensionless parameter x = (nd+ − nd−)/(nd+,0 − nd+,0)− 1,
and the characteristic oscillation frequency ω0 =

√
2ωpd k/(k2 + k2

D)1/2; the dust plasma
frequency reads ωpd = (4πnd0Z

2
d0e

2/M)1/2. The Debye wave number kD is defined via

the effective Debye length λDeff = (λ−2
De + λ−2

Di)
−1/2, where λDe = (kBTe/4πne0e

2)
1

2 and

λDi = (kBTi/4πZini0e
2)

1

2 are the electron and ion Debye radii, respectively. See that the
inertialess electrons and ions affect the dust acoustic oscillations via a dynamical charge
balance. In the limit k � kD, ω0 ≈ ωpd

√
2. Dust density gradients are neglected.

Upon formally setting ω2
0 → α > 0, h → −2q/ω2

0 and γt → 2y, the ordinary differen-
tial equation (ODE) (5) is cast into the canonical form of the Mathieu Equation:

d2x

dt2
+ (α − 2q cos 2y) x = 0 , (5)

which is well known to describe parametric oscillations [3-5]. The Mathieu Equation
has been extensively studied in the past [6, 7] and its nonlinear behavior is more or
less known. Some of this know how may now be applied in the present case, in view of
elucidating dust charge dynamics in complex plasmas.

For given α, q and y parameter values, Eq. (5) possesses a solution in terms of (com-
binations of) the odd and even parity Mathieu functions C(α, q, y) and S(α, q, y), re-
spectively [6, 7]. Naturally, the harmonic solutions C(α, 0, y) = cos

√
ay and S(α, 0, y) =
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Figure 2: (a) and (b) x(t) vs. t; (c) phase space x(t)-x′(t); ω0 = 100γ = 2π and h = 0.7.
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Figure 3: (a) and (b) x(t) vs. t; (c) phase space x-x′; ω0 = γ/20 = 2π/20 and h = 0.9.

sin
√

ay are recovered in the limit q ∼ h → 0. For q ∼ h 6= 0, the Mathieu functions
are periodic (in y ∼ t) only for specific values (eigenvalues) of α, often denoted as ar

and br (where r is a rational number), for which C and S give rise to the elliptic cosine

and elliptic sine functions, cer(y, q) and ser(y, q), respectively. For arbitrary values of
α ∼ ω2

0 (other than the eigenvalues ar and br), the Mathieu functions may be rather
complicated non-periodic functions of time.

The (even) solution of Eq. (4) is depicted in Figs. 1-3, for a set of representative
parameters values: ω0 = 100γ = 2π (so that T0 ≡ 2π/ω0 = 0.01 × 2π/ω0 ≡ 0.01Tch �
Tch). Furthermore, in Fig. 1 we have taken h = 0.1, which results to a phase portrait
which is qualitatively reminiscent of the harmonic behavior (for h = 0). A higher value
of h = 0.7 results in a more complex, bi-periodic behavior; see Fig. 2. The opposite
limit Tch � T0 is considered in Fig. 3.

Interestingly, for certain (realistic) parameter values, Mathieu functions may possess
a finite imaginary part; as a consequence, the solutions of Eq. (4) (physically defined via
the dust species’ number densities; see above) may undergo a damping effect. Physically,
this is a different facet of the Melandsø collisionless damping mechanism [1], well known
to dominate dust-acoustic oscillations due to dust grain dynamical charging.

4. Reduction to a set of coupled amplitude ODEs & stability analysis. The
stability of dust charge oscillations near parametric resonance may be studied via an
averaging technique proposed by Landau [3]. Since parametric resonance is stronger for
a frequency ω(t) nearly twice the eigenfrequency ω0 (see e.g. in Ref. 3, §27), we shall
consider the parametric excitation frequency to be γ = 2ω0 + ε, where ε � 1 is a (small)
real parameter.

We assume a solution given by the ansatz

x = a(t) cos
(

ω0 +
ε

2

)

t + b(t) sin
(

ω0 +
ε

2

)

t , (6)



where the (real) coefficients a and b vary slowly with time. Substituting Eq. (6) into (5)
and keeping only first order terms ε and h, we obtain the system of equations

da

dt
= − b

2

(

ε +
hω0

2

)

≡ f(a, b) , (7)

db

dt
= +

a

2

(

ε − hω0

2

)

≡ g(a, b) . (8)

These equations represent a system of first order, autonomous, ordinary differential
equations, governing the amplitudes of the approximate solution expressed in (6).

Taking a, b ∼ est, one obtains s2 = 1
4
[(hω0/2)2 − ε2]; the reality condition −hω0

2
<

ε < hω0

2
delimits the range where parametric resonance occurs, on either side of ω0.

It is seen from Eqs. (7) and (8) that a = b = 0 (i.e. x = 0) determines an equilibrium
state (a fixed point in phase space (a, b)). The stability of the fixed point is determined
by the eigenvalues of the Jacobian matrix J of the vector fields in Eqs. (7) and (8).
Here, a11 = ∂f

∂a
= 0, a12 = ∂f

∂b
= −1

2
(ε + hω0

2
), a21 = ∂g

∂a
= 1

2
(ε − hω0

2
) and a22 = ∂g

∂b
= 0.

The characteristic polynomial p(λ) = λ2 + 1
4

(

ε2 − h2ω2

0

4

)

, so J possesses two (conjugate)

imaginary eigenvalues, λ1,2 = ±i(h2ω2
0/4 − ε2)1/2/2, provided that |hω0/2| > ε > 0.

Thus, the origin is an orbit center. This is in agreement with the oscillatory portrait
obtained in the Figures.

Concluding, we have investigated the parametric excitation of dust acoustic oscilla-
tion due to dust grain charge variation in time. A two-fluid model led to a Mathieu-type
ODE, describing stable nonlinear oscillations which represent the variation of dust num-
ber density in time. It may be added, for rigor, that a similar analysis was employed in
the past to model dust dynamics in the presence of dynamical source and sink mecha-
nisms [8, 9], leading to a hybrid Van der Pol-Mathieu Equation for dust dynamics.
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