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Abstract

An exact theory for the nonlinear amplitude modulation of electromagnetic (EM) waves prop-

agating in multi-component plasmas is presented. Focus is made on the nonlinear propagation of

EM waves in a three-component plasma, consisting of two pair-ion populations and a third mas-

sive ion (assumed immobile). This model referes to electron-positron-ion (epi) plasmas, as well as

pair-ion plasmas (p.p.) which are doped with a third massive charged species (e.g. dust defects).

Relying on a multi-fluid + Maxwell plasma description, and employing a multiple scales (“re-

ductive pertubation”) technique, the slow space and time evolution (modulation) of an EM

wavepacket’s envelope is shown to be governed by a set of coupled nonlinear Schrödinger-type

equations (CNLSEs), governing the magnetic field (perturbation) components transverse to the

ambient magnetic field. The conditions for modulation instability, and for the occurrence of local-

ized EM modes (envelope solitons) are thus investigated.

PACS numbers: 52.27.Lw, 52.35.Mw, 52.35.Sb

Keywords: Multi-species plasmas, electromagnetic (EM) waves, nonlinear envelope structures, solitons,

Nonlinear Schrödinger Equation (NLSE), pair-ion plasmas, electron-positron-ion (epi) plasmas.
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I. INTRODUCTION

Localized EM pulses, solitons. Space observations of electromagnetic (EM) plasma waves

(by instruments on board satellite missions) provide abundant evidence for the existence

of spatially localized propagating EM structures, e.g. in the Earth’s magnetosphere [1–3].

These solitary EM waves are manifested as propagating localized excitations of the electric

and magnetic fields, accompanied by co-propagating intrinsic plasma parameter (density,

fluid velocity) perturbations, which vanish far from the center of the EM perturbation.

Localized EM excitations typically take the form of a (one or more) localized hump(s) (a

pulse soliton, or a train of such solitons). Kink-shaped transitions among two different

potential regions (double layers, DLs, or kink solitons) have also been observed. Following

a rather established theoretical paradigm, such structures are effectively modeled as quasi-

solitons, i.e. localized entities (in fact, solutions of generic integrable partial derivative

equations, PDEs) which owe their remarkable stability to a mutual balance among the

wave dispersion and the intrinsic medium (plasma, here) nonlinearity [4]. In a plasma

fluid-theoretical context, soliton excitations are typically modeled via a Sagdeev pseudo-

potential (or a Bernoulli quasi-fluid) description and/or, in a long wavelength limit, by the

Korteweg-de Vries (KdV) – or associated, e.g. modified KdV – equation paradigm(s) [5].

EM plasma soliton theories have successfully been tested – and confirmed – by laboratory

plasma experiments.

Modulated wavepackets, envelope solitons. Apart from these widely studied localized EM

forms, an apparently omnipresent type of localized excitation bears the form of a localized

envelope pulse, which confines (modulates) a fast internal oscillatory structure (the EM

carrier wave) and propagates at the EM wave group velocity. Modulated wavepackets of this

form occur widely in realistic plasma situations, since nonlinearity generically results in wave

amplitude variation in space and time. This amplitude modulation (AM), however weak, may

potentially grow, as a result of random perturbations (noise), thus leading to strong energy

localization and eventually to wave collapse into a “sea” of random excitations (modulation

instability, MI). Alternatively, the perturbed system may evolve towards a stable final state

in the form of a series of localized envelope pulses (envelope solitons), i.e. the envelope

excitations we are interested in modeling here.

Self-modulation, theoretical framework. EM wave amplitude modulation may be due to
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FIG. 1: Modulated structures, related to ‘chorus’ (EM) emission in the magnetosphere (CLUSTER

satellite data; reprinted from [1]).

FIG. 2: Localized envelope structures in the magnetosphere (reprinted from [2]).

a variety of reasons. It often is the result of EM wave ponderomotive coupling to slow

electrostatic (ES) plasma perturbations [6–9]. The plasma response then takes the form of

a localized density variation, which accompanies the localized E/M field excitation; such

bi-soliton forms are clearly seen in satellite recordings. However, AM may be simply due

to nonlinear self-interaction of the carrier wave; this auto- (self-) modulation of EM modes

generally leads to secondary harmonic generation in the Fourier spectrum and eventually

to energy localization the MI mechanism described above. Nonlinear wave modulation thus

leads to the formation of localized excitations which are entirely different (in structure and

physics) from the constant profile pulses described above. These are typically modeled as en-

velope soliton solutions of nonlinear Schrödinger (NLS) type, or associated (differential NLS,

DNLS) equations, which may be derived by appropriate perturbation schemes. Implement-

ing the so-called reductive perturbation (multiple scales expansion) technique [10], a generic

framework for modulated ES structures in a single-fluid plasma picture was elaborated in

[11], and was recently extended to a number of multi-fluid problems [12]. A similar frame-

work has been employed in the description of EM waves [13, 14], although no systematic

general multi-species theory has so far been presented, to out knowledge.

Electron-positron (e-p) plasmas, pair-ion plasmas (p.p.): prerequisites. Magnetized

electron-positron (e-p) plasmas exist in pulsar magnetospheres [15–19], in bipolar outflows

(jets) in active galactic nuclei [20], at the center of our own galaxy [21], in the early universe
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FIG. 3: Electrostatic noise wave forms, related to modulated electron-acoustic waves (FAST satel-

lite data; figure reprinted from [3]). The co-existence of a high (carrier) and a low (modulated

envelope) frequencies is clearly reflected in the Fourier spectrum, in the right.

[22], and in inertial confinement fusion scheme using ultraintense lasers [23]. Non-relativistic

pair plasmas have also been created in experiments [24] for understanding the dynamics of

pairs. Recently, Helander and Ward [25] has discussed the possibility of pair production in

large tokamaks due to collisions between multi-MeV runaway electrons and thermal parti-

cles. Remarkably, pair-ion plasmas (p.p.), i.e. plasmas composed of (two populations of)

fully ionized particles with same mass and absolute charges of opposite charge sign, have

recently been created in laboratory [26] by creating a large ensemble of fullerene ions (C+
60

and C−
60, in equal numbers), thus allowing for a study of p.p. properties without having to

bother for mutual annihilation (recombination), which is responsible for e-p plasma short

lifetimes.

Pair plasmas: physics, previous works. The physics of a pair plasma is markedly dif-

ferent from the electron-ion (e-i) plasma in that many of the time and space scales, which

are present in an e-i plasma, are simply absent in a pair plasma due to equal masses of the

pairs [27–29]. For example, in an unmagnetized pair plasma, the two distinct normal modes

are the high-frequency electromagnetic and Langmuir waves, which interact neither linearly

nor nonlinearly. In a magnetized pair plasma, besides the electrostatic upper-hybrid waves,

we have the perpendicularly propagating ordinary and extraordinary modes as well as mag-

netic field-aligned circularly polarized EM waves. Iwamoto [30] has presented an elegant

description of numerous linear collective modes in a non-relativistic pair magnetoplasma.

Zank and Greaves [31] have discussed the linear properties of various electrostatic and elec-

tromagnetic modes in unmagnetized and magnetized pair plasmas, in addition to discussing
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the two-stream instability and non-envelope solitary wave solutions. Magnetic field-aligned

nonlinear Alfvén waves in an ultra-relativistic pair plasma have also been investigated by

Sakai and Kawata [32] and Verheest [33]. Zhao et al. [34] have performed three-dimensional

electromagnetic particle simulations of nonlinear Alfvén waves in an electron-positron mag-

netoplasma.

Pair plasmas: nonlinear theories. Nonlinear excitations in p.p. have been studied quite

extensively, yet mostly relying on the pseudo-potential (and associated) (see e.g. [35] and

Refs. therein), or the KdV [36] approaches. However, apart from direct extrapolations from

general multi-species approaches (cf. [14] and [37]), no systematic theory has so far been

presented for modulated envelope wavepackets in pair-ion plasmas. We aim at filling this

gap here.

Formulation of the problem. Our aim here is to model a three-component uniform mag-

netoplasma, consisting of a pair-species population, i.e. two particle species of equal mass

and absolute change, yet of opposite charge sign, in addition to a massive third component,

which may be considered immobile (frozen) at the frequency scale of interest. This descrip-

tion covers, e.g.

(i) e-p-i plasmas (1=positrons, 2=electrons, 3=ions),

(ii) doped pair ion plasmas, e.g. fullerene pair plasmas (1=C+
60, 2=C−

60) enriched with an

extra massive charged component, i.e. defects or dust (3=X+)

(iii) multi-species dusty plasmas with opposite polarity dust grains (1=d+, 2=d−, 3=d′+,

with m3 ≫ m2 = m1).

II. THE MODEL

To make the notation clear, we consider a plasma composed of three distinct particle

species, namely:

- positive ions (mass m1 = m, charge q1 = s1Z1e = +Ze), here referred to as species 1,

- negative ions (mass m2 = m, charge q2 = s2Z2e = −Ze), here referred to as species 2, and

- (heavier) positive ions (mass m3 = mi ≫ m, charge q3 = s3Z3e = +Zie), alias species 3.

We have defined the charge state(s) Zj (j = 1, 2, 3), the charge sign sj = qj/|qj| = ±1 and

the absolute electron charge e; we shall denote the respective equilibrium number densities

by nj,0. In specific, we aim at modeling e-p-i plasmas (Z1 = Z2 = 1, s1 = −s2 = s3 = +1) or,
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alternatively, pair plasmas of the type, say, X+Z
A X

′−Z
A Y ±Z′

A′ , i.e. enriched with a third massive

ion (or dust) component (Z1 = Z2 = Z, s1 = −s2 = +1 and s3 = ±1 — either case may

be possible). Pair fullerene-ion [viz. 1 (2) = C
+(−)
60 ] contaminated, say, by charged defects

(e.g. 3 = dust) are thus covered, for Z = 1. The pure p.p. case is also implicitly covered,

for n3,0 = 0. Although the parameter space (sj, Zj,mj) is thus somewhat prescribed, given

the physical system of interest, we may keep the general notation (i.e. indices j = 1, 2, 3

everywhere) wherever appropriate, for generality.

We shall consider the (two-) fluid plasma moment evolution (density and momentum)

equations:

∂nj

∂t
+ ∇ · (nj uj) = 0 (1)

∂uj

∂t
+ uj · ∇uj =

qj
mj

(

E +
1

c
uj × B

)

, (2)

where nj and uj respectively denote the density and the mean (fluid) velocity of species j

(= 1, 2). The (total) electric and magnetic fields, denoted by E and B respectively, obey

Maxwell’s laws:

1

c

∂B

∂t
= −∇× E , (3)

1

c

∂E

∂t
= ∇× B − 4π

c

∑

j

njqjuj , (4)

The electric field E = −∇φ (deriving from an electric potential φ), obeys Poisson’s equation

∇ · E = −∇2φ = 4π
∑

j=1,2,3

qj nj , (5)

where the index “0” denotes the (fixed) equilibrium densities, and the magnetic field satisfies

Gauss’ law

∇ · B = 0 . (6)

We may note that, although valid, the latter two equations are here treated as constraints,

rather than part of the system’s evolution law, since Eqs. (1) - (4) form a closed system of

(14) scalar evolution equations, for the (14 scalar) [45] elements of the state vector

S = (n1, u1,x/y/z;n2, u2,x/y/z;Ex/y/z;Bx/y/z) ∈ ℜ14 . (7)

At equilibrium, overall charge neutrality is assumed, so the densities satisfy

∑

j

qj nj,0 =
∑

j

sjZjnj,0 = 0 , (8)
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FIG. 4: The reference frame: EM wave propagation takes place along the x−axis, while the ambient

magnetic field lies in the xz−plane.

viz. Zn+,0 − Zn−,0 + siZini,0 = 0 in doped pair plasmas, or in e-p-i plasmas (where Z =

si = 1). Note that the existence of the third species, which otherwise appears nowhere in

the plasma fluid-dynamical equations (1) - (4), affects the dynamics via the charge balance;

for instance, the ratio n1,0/n2,0 = n+,0/n−,0 (= 1 in pair plasmas) now becomes n1,0/n2,0 =

1−si(ni,0/n2,0)Zi/Z < 1 (or> 1) for positive (respectively, negative) fixed ions, i.e. n+/n− =

1 − ni,0Zi/n−,0 < 1 in e-p-i plasmas. Furthermore, a quiescent plasma is considered, so

u1 = u2 = 0 at equilibrium. Finally, although no ambient electric field exists, viz. E0 = 0,

a uniform external magnetic field induction B0 is considered.

The tedious analytical calculation is simplified by introducing an appropriate reference

frame. We may assume that the direction of wave propagation defines the axis x, e.g.

implying a wave number k = kx̂ in the linear case (x̂, ŷ, ẑ here denote the unit vectors along

the respective directions). Furthermore, we shall assume that the external magnetic field

B0 lies on the x− z plane, i.e. B0 = B0,xx̂+B0,z ẑ = B0(cos θx̂+ sin θẑ). All quantities are

assumed to vary along the direction of propagation, i.e. ∇ → ∂/∂x (see that the operator

∇ × · , in Maxwell’s Eqs., thus becomes x̂ × ∂ · /∂x). Eqs. (6) and (the x−component

of) (3) thus immediately imply a static magnetic field component along propagation, i.e.

Bx = Bx,0 = B0 cos θ =cst. [38].

The analytical model described here is generic, and agrees with the model adopted in

Refs. [31, 35, 36], for oblique EM wave propagation, as well as in Ref. [14], for parallel

propagation (see that a three-fluid model was employed in Refs. [14, 36], though). The

analysis of linear wave characteristics carried out in these Refs. is therefore herein confirmed,

and is understood as a prerequisite to the nonlinear investigation proposed in the following.
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It may be noted, for rigor, that an alternative description may be adopted (also in view

of reducing the number of dynamical variables), by defining the vector potential A, viz.

B = ∇×A (thus B0 = ∇×A0); cf. in Ref. [14]. Defining the transverse component of the

vector potential perturbation A − A0, as

A⊥ = Ay ± iAz , (9)

and denoting the transverse velocity, electric and magnetic field corrections accordingly, via

complex variables

uj,⊥ = uj,y ± iuj,z , E⊥ = Ey ± iEz , B⊥ = By ± iBz , (10)

the latter two evolve according to

E⊥ = −1

c

∂A⊥

∂t
, B⊥ = ±i∂A⊥

∂x
. (11)

Here (and below), the upper/lower (here +/-) sign refers to the L/R, i.e. left-/right-hand

polarized wave(s), respectively. Eq. (3) is identically satisfied now, while (4) thus takes a

closed form, in terms of A. This notation is useful in the parallel propagation case, yet the

apparent “symmetry” among the dynamics of the transverse components of the magnetic

field is broken in the oblique propagation case, and physical transparency (by introducing

B) is lost. We may nevertheless keep definitions (9) - (11) here, for reference.

III. PERTURBATIVE ANALYSIS: THE ANALYTICAL FRAMEWORK

Equations (1) – (4) describe the evolution of the state vector S (defined above), which

accepts a harmonic (electrostatic) wave solution in the linear (weak amplitude) approxima-

tion, in the form S = S0 exp[i(k · r−ωt)]+ c.c. (the carrier phase is essentially φ = kx−ωt,

in our frame; ”c.c.” denotes the complex conjugate quatity). Once the wave amplitude be-

comes important (small but finite), nonlinearity enters into play, due to self-interaction of

the carrier wave. This is first manifested as self- (auto-)modulation of the amplitude, i.e. a

weak variation of the wave’s envelope in space and time, and the creation of sidebands in

Fourier space. The evolution profile then includes generation of secondary phase harmonics

and, as the amplitude grows locally, energy localization via modulational instability of the

wave envelope.
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What follows is essentially an implementation of the long known reductive perturbation

technique [10], which was first applied in the study of electron plasma waves [10] and electron-

cyclotron waves [13], more than three decades ago. In order to study the nonlinear (ampli-

tude) modulational stability profile of these electrostatic waves, we consider small deviations

from the equilibrium state

S(0) = (n1,0,0;n2,0,0;0;B0)
T ,

viz.

S = S(0) + ǫS(1) + ǫ2S(2) + ... ,

where ǫ≪ 1 is a (real) smallness parameter. We assume that

S
(n)
j =

∞
∑

l=−∞

S
(n,l)
j (X, T ) exp [il(kx− ωt)]

(for j = 1, 2, ..., 14 here; see above); the condition S
(n,−l)
j = S

(n,l)
j

∗
holds, for reality [46].

The wave amplitude is thus allowed to depend on the stretched (slow) coordinates of space

X = {ǫnx, n = 1, 2, ...} = {X1, X2, ...} (viz. X1 = ǫx, X2 = ǫ2x, and so forth) and time

T = {ǫnt, n = 1, 2, ...} = {T1, T2, ...} (i.e. T1 = ǫt, T2 = ǫ2t, ...), to be distinguished from

the (fast) carrier variables x (≡ X0) and t (≡ T0).

It may be appropriate to note, here, that this perturbation scheme is exactly equivalent to

(yet rather more physically transparent than) the alternative assumption – often encountered

in literature – which consists in defining the slow parameters X = ǫ(x− λ t) and T = ǫ2 t.

The real variable λ, is thus interpreted at a later stage as the wave’s group velocity, i.e.

λ = vg = ω′(k).

According to the above considerations, we set:

∂/∂t→ ∂/∂T0 + ǫ∂/∂T1 + ǫ2∂/∂T2 + ... and ∇ → ∂/∂X0 + ǫ∂/∂X1 + ǫ2∂/∂X2 + ... ,

so that

∂

∂t
Ψ

(n)
l eilφ =

(

− ilωΨ
(n)
l + ǫ

∂Ψ
(n)
l

∂T1

+ ǫ2
∂Ψ

(n)
l

∂T2

)

eilφ + O(ǫ3) ,

∇Ψ
(n)
l eilφ =

(

+ ilkΨ
(n)
l + ǫ

∂Ψ
(n)
l

∂X1

+ ǫ2
∂Ψ

(n)
l

∂X2

)

eilφ + O(ǫ3) , (12)

for any l−th phase harmonic amplitude Ψ
(n)
l among the components of S(n). Recall that φ

denotes the carrier (1st harmonic) phase φ ≡ kx− ωt.

10



By inserting the above ansatz into Eqs. (1) to (4), one obtains a set of (coupled) reduced

evolution equations for the state variable harmonic amplitudes S
(n,l)
j (here j = 1, 2, ..., 13

[38]), which should be solved in each perturbation order ∼ ǫn for the l−th phase harmonic

amplitudes (l = −n,−n + 1, ..., n − 1, n). Although particularly lengthy, the calculation is

perfectly straightforward, so unnecessary details will be omitted in the following.

IV. ANALYTICAL MANIPULATION OF THE EVOLUTION EQUATIONS: THE

METHODOLOGY

In every order ∼ ǫ, one needs to cope with the tedious task of solving the large system

of evolution equations, namely Eqs. (1, 2) for each fluid j (=1, 2), Faraday’s law (3) and

Ampère’s law (4) (as expressed in the specific order). For clarity, the scalar equations for

the state variables are explicitly reproduced in the following.

A. The complete system of scalar evolution equations for the state variables

In our reference frame, the equations for the 2 fluid densities and velocity components

read:

∂nj

∂t
+
∂

∂t
(njuj) = 0 (13)

∂uj,x

∂t
+ uj,x

∂uj,x

∂x
=

qj
mj

[

Ex +
1

c
(uj,yBz − uj,zBy)

]

, (14)

∂uj,y

∂t
+ uj,x

∂uj,y

∂x
=

qj
mj

[

Ey +
1

c
(uj,zBx − uj,xBz)

]

, (15)

∂uj,z

∂t
+ uj,x

∂uj,z

∂x
=

qj
mj

[

Ez +
1

c
(uj,xBy − uj,yBx)

]

. (16)

Recall that m1 = m2 = m and q1 = −q2 = +Ze, here. Faraday’s law relating the E/M fields

reads:

∂Bx

∂t
= 0 , (17)

∂By

∂t
= +c

∂Ez

∂x
, (18)

∂Bz

∂t
= −c∂Ey

∂x
. (19)

Remember that Eq. (17) (together with ∇ · B = ∂Bx/∂x = 0) is consistent with Bx =

cst., as stated above, implying B
(n′)
x = 0 at every order n′. Ampère’s law, which couples the
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dynamics of the separate fluids, reads

∂Ex

∂t
= −4π

∑

j

njqjux,y

= −4πZe (n1u1,x − n2u2,x) , (20)

∂Ey

∂t
= −c∂Bz

∂x
− 4π

∑

j

njqjuj,y

= −c∂Bz

∂x
− 4πZe (n1u1,y − n2u2,y) , (21)

∂Ez

∂t
= +c

∂By

∂x
− 4π

∑

j

njqjuj,z

= +c
∂By

∂x
− 4πZe (n1u1,z − n2u2,z) . (22)

B. Method of analytical treatment

The method employed to disentangle the large system above consists in eliminating Ey

and Ez everywhere, by making use of Eqs. (18, 19), and then separately considering the

(two - formally analogous - systems of) fluid equations for the fluid variables, on one hand,

and Ampère’s law (20-22) for Ex, By and Bz, on the other. Further eliminating the parallel

electric field Ex everywhere, via (the x−component of Ampère’s law (20), provides a set

of expressions for the state variables in terms of the transverse magnetic field components,

namely By and Bz.

In specific:

(i) The first subset of equations is obtained by combining Eqs. (13 - 16) and (18, 19) into

a system for the j−th fluid variables, in terms of Ex, By and Bz, namely

∂nj

∂t
+
∂

∂t
(njuj) = 0 (23)

∂uj,x

∂t
+ uj,x

∂uj,x

∂x
= sjΩj

(

cE ′
x + uj,yB

′
z − uj,zB

′
y

)

, (24)

∂

∂x

(

∂uj,y

∂t
+ uj,x

∂uj,y

∂x

)

= sjΩj

(

−∂B
′
z

∂t
+ uj,zB

′
x − uj,xB

′
z

)

, (25)

∂

∂x

(

∂uj,z

∂t
+ uj,x

∂uj,z

∂x

)

= sjΩj

(

+
∂B′

y

∂t
+ uj,xB

′
y − uj,yB

′
x

)

. (26)

For reference, let us write down the linearized version of this system (to be made extensive

use of, below), which can be cast in the form

L0,j fj = F ,
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viz.















∂/∂t nj,0∂/∂x 0 0

0 ∂/∂t −sjΩj sin θ 0

0 sjΩj sin θ∂/∂x ∂2/∂t∂x −sjΩj cos θ∂/∂x

0 0 sjΩj cos θ∂/∂x ∂2/∂t∂x





























n
(n,1)
j

u
(n,1)
j,x

u
(n,1)
j,y

u
(n,1)
j,z















=















0

cE
(n,1)
x

−∂B(n,1)
z /∂t

+∂B
(n,1)
y /∂t















,

(27)

where the definitions of the linear matrix operator L0,j(∂/∂t, ∂/∂x) and of the vectors fj and

F are obvious. We have defined the j−th species cyclotron frequency Ωj = |qj|B0/(mjc),

viz. qjB0/(mjc) = sjΩj, i.e. Ω1 = Ω2 = ZeB0/(mc) and s1 = −s2 = +1. The primed

quantities denote field components scaled by B0, i.e. the dimensionless quantities E ′
x =

Ex/B0, B
′
y = By/B0 and B′

z = Bz/B0. One thus has two distinct (yet of formally identical

structure) sets of equations, to be solved for the two fluid variables, in terms of E ′
x, B

′
y and

B′
z.

(ii) One more subset of equations is obtained by combining Eqs. (20 - 22), respectively,

via (18, 19), into

∂E ′
x

∂t
= −4π

B0

∑

j

njqjux,y

= −4πZe (n1u1,x − n2u2,x) , (28)

∂2B′
z

∂t2
− c2

∂2B′
z

∂x2
= +

4πc

B0

∂

∂x

∑

j

njqjuj,y

= +
4πZec

B0

∂

∂x
(n1u1,y − n2u2,y) , (29)

∂2B′
y

∂t2
− c2

∂2B′
y

∂x2
= −4πc

B0

∂

∂x

∑

j

njqjuj,z

= −4πZec

B0

∂

∂x
(n1u1,z − n2u2,z) . (30)

(iii) Now,

– solving Eqs. (13-26) for {nj, uj,x/y/z}, in terms of Ex, By and Bz (for j = 1, 2: the

expressions will be analogous), and then

– substituting into (28-30) (now explicitly taking j = 1, 2 separately),

one obtains a system for E ′
x, B

′
y and B′

z; in principle, this (linear) system is homogeneous

to 1st order, and should thus be imposed to bear a vanishing determinant D = 0 (otherwise

only the trivial, zero-vector solution exists); apart from a linear dispersion relation (which

13



thus naturally arises as a compatibility constraint), one obtains a solution for E ′
x in terms

of, say, B′
y and B′

z (any other variable combination could be chosen at this stage).

– The latter may now be substituted back into {nj, uj,x/y/z} (obtained above), to provide the

final expressions for the fluid variables (in terms of By and Bz). The remaining transverse

electric field variables Ey and Ez are then readily obtained from Eqs. (18, 19).

By iterating this procedure at every order n (= 1, 2, ...) and for each harmonic l (=

0, 1, ..., n), we obtain the solution for the harmonic amplitudes and a number of relations in

the form of compatibility conditions, which provide the linear EM wave dispersion relation,

the wave envelope’s (group) velocity and the amplitude evolution equation(s). A symbolic

computation software package (Maple, Mathematica) may be used to facilitate this tedious

task.

V. 1ST-ORDER DYNAMICS (n = 1): LINEAR EM WAVES, HARMONIC AM-

PLITUDES, DISPERSION RELATION

The 1st-order equations describe the dynamics of a linear solution of the system of Eqs.

(1) - (4) which, for n = l = 1, lead to the system of equations

−ωn(1,1)
j + nj,0 ku

(1,1)
j,x = 0 (31)

ωu
(1,1)
j = i

qj
mj

(

E(1,1) +
1

c
u

(1,1)
j × B0

)

, (32)

ω

c
B(1,1) = k × E(1,1) , (33)

ω

c
E(1,1) = −k × B(1,1) − 4πi

c

∑

j

nj,0qju
(1,1)
j , (34)

where j = 1, 2.

The homogeneous linear system obtained for n = l = 1 (1st-order, 1st harmonics) pos-

sesses a non-trivial (non-zero) solution only if its determinant, say D0, vanishes. This

requirement provides the harmonic wave dispersion law. Therefore, the remaining part of

this Section is dedicated to different distinct tasks. First, the linear dispersion relation

(which ensures the compatibility condition D0 = 0) is derived and briefly discussed. Then,

the system is manipulated in order to obtain a set of explicit relations among various state

variables; these may serve in interpreting e.g. EM wave Space or laboratory measurements

of electric/magnetic field components. The evolution law is then solved for the dynami-
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cal variables involved (recall that 13 variables evolve here, since Bx =cst.), in terms of a

subset of free evolving variables: these will be chosen as the transverse magnetic field com-

ponents, By and Bz, as we shall see below. A final note is added, about the zeroth harmonic

contribution, for rigor.

A. Dispersion relation

Evaluating the determinant of the (linear) system of Eqs. (31)-(34), for e-p-i (or “doped”

pair-ion) plasma, and taking it to vanish (for a non-trivial solution to exist), one is led to a

dispersion relation in the form

D(ω, k; θ) = d0(ω, k) + d1(ω, k) sin2 θ = 0 , (35)

where d0 and d1 are polynomial expressions given by

d0(ω, k) ≡ D(ω, k; θ = 0)

= (ω2 − ω2
p,eff )

×
{[

(ω2 − c2k2)(ω2 − Ω2) − ω2ω2
p,eff

]2 − ω2Ω2(ω2
p,1 − ω2

p,2)
2
}

= (ω2 − ω2
p,eff )

×
{

(ω + Ω)
[

−(ω2 − c2k2)(ω − Ω) + ωω2
p,1

]

+ ω(ω − Ω)ω2
p,2

}

×
{

(ω − Ω)
[

−(ω2 − c2k2)(ω + Ω) + ωω2
p,1

]

+ ω(ω + Ω)ω2
p,2

}

, (36)

and

d1(ω, k; θ) = −c2k2Ω2
{

c2k2ω2
p,eff (ω

2 − Ω2) + ω2[4ω2
p,1ω

2
p,2 − (ω2 − Ω2)ω2

p,eff ]
}

, (37)

where we have defined the plasma frequency ωp,j = (4πnj,0Z
2e2/mj)

1/2 of the j−th (i.e.

1 = + or 2 = −) species, the effective (total) plasma frequency ωp,eff = (ω2
p,1 + ω2

p,2)
1/2 and

the cyclotron frequency Ω = ZeB0/(mjc). Note that d0 is a 10th order polynomial in the

frequency ω, while d1 is a 4th order polynomial in ω; in both quantities, only even terms

are present, so that d0 (d1) is essentially a quintic (quartic) polynomial in ω2. Therefore,

upto 5 different solutions for ω2 may exist, hence 5 distinct even modes for the (real part of

the) frequency ω are possible to propagate, depending on the angle θ and the values of the

physical parameters involved.
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Dimensionless form of the dispersion relation. The general dispersion relation

(35) may be reduced, for future manipulation, into a dimensionless form, by defining appro-

priate scales. Following the notation in [37], we may define the density mismatch parameter

η =
n+,0 − n−,0

n+,0 + n−,0

(38)

(see that ω2
p,1−ω2

p,2 = ηω2
p,eff ), which measures deviation from pair-ion neutrality (the “pure”

pair plasma case is recovered for η → 0; the case η 6= 0 thus indicates the existence of a third

species, or an overall neutrality violation in the plasma composition, at equilibrium). We

shall also define the reduced wave frequency, wavenumber and reduced plasma frequency

f = ω/Ω , κ = ck/Ω , h = ω2
p,eff/Ω

2 = (ω2
p,1 + ω2

p,2)/Ω
2 , (39)

respectively; see that ω2
p,1/2/Ω

2 → (1 ± η)h/2. Eqs. (36) and (37) thus become

d̂0(ω, k) ≡ d0/Ω
10

= (f 2 − h2)
{[

(f 2 − κ2)(f 2 − 1) − f 2h2
]2 − f 2η2h2

}

= (f 2 − h2)

×
{

(f + 1)
[

−(f 2 − κ2)(f − 1) + f(1 + η)h/2
]

+ f(f − 1)(1 − η)h/2
}

×
{

(f − 1)
[

−(f 2 − κ2)(f + 1) + f(1 + η)h/2
]

+ f(f + 1)(1 − η)h/2
}

, (40)

and

d̂1(ω, k; θ) ≡ d1/Ω
4 = −κ2

{

κ2h(f 2 − 1) + f 2[(1 − η2)h2 − (f 2 − 1)h]
}

, (41)

Parallel EM wave propagation. For parallel propagation, i.e. for θ = 0, expression

(35) reduces to d0 = 0 [recall (37)], implying the existence of a number of distinct non-trivial

(parallel) propagation modes, which are described by the dispersion relations:

ω2 = ω2
p,eff (42)

ω4 − ω2(ω2
p,eff + Ω2 + c2k2) − ωΩ(ω2

p,1 − ω2
p,2) + c2k2Ω2 = 0 (43)

and

ω4 − ω2(ω2
p,eff + Ω2 + c2k2) + ωΩ(ω2

p,1 − ω2
p,2) + c2k2Ω2 = 0 (44)

We see that a number of distinct modes are present, i.e. solutions of (43, 44) for ω. Note

that the latter two relations are only different due to the deviation from incompressibility (i.e.
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n1,0 6= n2,0), due to the existence of the third (fixed ion) species, e.g. ions in e-p-i plasmas,

or “dust” defects in pair-ion (eg. fullerene) plasmas; indeed, ω2
p,1 −ω2

p,2 ∼ n1,0 −n2,0, so that

these relation merge into one another in the p.p. limit (see below).

The modes described by Eqs. (43, 44) have been briefly discussed in Ref. [37] [see that

the relations are identical [39] to Eqs. (5, 6) therein], relying upon the results in [14]. These

equations may be cast in the form [37]

(f 2 − 1)(f 2 − κ2) − f 2h± ηhf = 0 (45)

where the reduced frequency f and all (dimensionless) parameters were defined above.

Interestingly, in the pure pair-plasma case (i.e. for η = 0), (45) can be solved exactly for

f 2, leading (apart from f = ±h) to

f 2 =
1

2
(1 + κ2 + h)

{

1 ±
[

1 − 4κ2/(1 + κ2 + h)2
]1/2}

, (46)

i.e.

f 2 ≈ 1

2
(1 + κ2 + h)

{

1 ±
[

1 − 2κ2(1 − 2h)
]}

(47)

for small wavenumber κ (and, say, plasma frequency h). One thus obtains (lower branch)

acoustic mode:

f 2
− ≈ (1 + κ2 + h)κ2(1 − 2h) ≈ (1 − 2h)κ2 + O(κ2) , (48)

and an (upper branch) optic-type mode:

f 2
+ ≈ (1 + κ2 + h)

[

1 − κ2(1 − 2h)
]

. (49)

Now, switching back to η 6= 0, the effect of the density mismatch, which results e.g. from

the existence of a third (fixed ion) species, is to split the two linearly polarized EM modes

(present in p.p. [35]) to four distinct circularly polarized modes, as pointed out in [37].

Focusing on the behavior near k = 0, one finds that three out of these modes present a

frequency cutoff, i.e. ω(k = 0) 6= 0, below which no wave propagates. For instance, in

the vicinity of f ≈ 0, and for small η and h, one finds analytically that the Alfvén type

wave which occurs for η = 0, splits into two modes, one of which presents a cutoff at

f0 = |η|h/(1 + h).

The pair-plasma limit. In the absence of the 3rd (fixed ion) species, one recovers the

special case of a pair plasma; setting ωp,1 = ωp,2 = ωp) in (35), one obtains:

D|p.p.(ω, θ) =
[

(ω2 − c2k2)(ω2 − Ω2) − 2ω2ω2
p

]

×
[

ω2(ω2 − c2k2 − 2ω2
p)(ω

2 − Ω2 − 2ω2
p) − 2c2k2Ω2ω2

p cos2 θ
]

. (50)
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FIG. 5: Linear dispersion relation for EM waves in a three component pair-ion (or epi) plasma:

the reduced frequency f = ω/Ω is depicted against the reduced wavenumber κ = ck/Ω; (a) full

frequency range; (b) focusing near the origin. Here η = 0.5, h = 0.1 (definitions in the text).

Upon setting the first quantity within brackets, in the right-hand side (rhs), to zero, one

recovers the dispersion relation:

ω4 − (c2k2 + Ω2 + 2ω2
p)ω

2 + c2k2Ω2 = 0 , (51)

which coincides [39] with Eq. (9) in [35]; also see (24)-(26) in [31]. As shown in Ref. [35],

Eq. (51) represents the dispersion relation of an EM wave which propagates for any value of

the pitch angle θ, and whose only non-vanishing electric field component Ey is perpendicular

to the plane spanned by the magnetic field B0 and the wave vector k (i.e. Ex = Ez = 0);

this mode is always characterized by charge neutrality (ni = ne = n 6= n0, off equilibrium),

for θ 6= 0. For parallel propagation (θ = 0, or Bz = 0), this mode corresponds to a splitting

of the incompressible (ni = ne = n0), circularly polarized EM waves (present in e-i plasmas)

into two orthogonal, linearly polarized EM waves, both obeying Eq. (51). For perpendicular

propagation (θ = π/2, or Bx = 0), this mode is part of the extraordinary (X) mode [29];

also see (21)-(22) in [31], and the accompanying discussion therein. See that both relations

(43) and (44) merge into (51) for ωp,1 = ωp,2; vice versa, in the presence of a third species

(e.g. in e-p-i plasmas), this mode splits into 2 parts, given by (43) and (44).

On the other hand, upon setting the second quantity within brackets, in rhs(50) to

zero, one recovers exactly [39] Eq. (10) in [35], representing an EM mode propagating in

pair plasmas, for which Ey = 0 (i.e. no electric field is generated perpendicular to the plane
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defined by B0 and k). Interestingly, for θ = π/2, one obtains a pair of (decoupled) dispersion

relations, namely ω2 = 2ω2
p + c2k2 (corresponding to an incompressibly, linearly polarized

ordinary (O) mode [29], with Ez 6= 0) and ω2 = 2ω2
p + Ω2 (representing a fixed frequency,

pure upper-hybrid mode, with Ex 6= 0) [35].

The case of parallel EM wave propagation in p.p. is obtained either by setting θ = 0 in

(50), or by setting ωp,1 = ωp,2 = ωp in (36); one thus obtains

D0|p.p.(ω, θ = 0) = −i ω3 (ω2 − 2ω2
p) [ω4 − (c2k2 + Ω2 + 2ω2

p)ω
2 + c2k2Ω2]2 , (52)

thus recovering the Ey-mode discussed above, plus trivial (non-propagating, since pressure

effects are neglected) plasma oscillations at ω =
√

2ωp.

B. Algebraic manipulation of the 1st order 1st harmonic (n = 1, l = 1) amplitudes:

fluid velocities vs. E/M fields

We shall now attempt to clarify the analytical dependence of the first harmonic ampli-

tudes on various parameters, as well as their relation to one another.

First, the density perturbation amplitudes n
(1,1)
j are readily determined for given fluid

velocity amplitudes along propagation u
(1,1)
j,x , from (31), as

n
(1,1)
j = nj,0

ku
(1,1)
j,x

ω
, (53)

(see that the density amplitudes n
(1,1)
j appear nowhere else in the 1st harmonic equations).

The velocity and magnetic field amplitudes are determined by (32) and (33), respectively,

in terms of the electric field perturbation, and may thus be eliminated in (34).

In our reference frame, the system of momentum equation(s) (32) takes a linear matrix

form Mju
(1,1)
j = E(1,1), viz.

mj

qj











−iω −sjΩj sin θ 0

sjΩj sin θ −iω −sjΩj cos θ

0 sjΩj cos θ −iω





















u
(1,1)
j,x

u
(1,1)
j,y

u
(1,1)
j,z











=











E
(1,1)
x

E
(1,1)
y

E
(1,1)
z











, (54)

(the definition of the matrix Mj is obvious) which may be solved formally, for ω 6= ±Ωj,
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viz. u
(1,1)
j = M−1

j E(1,1), i.e.










u
(1,1)
j,x

u
(1,1)
j,y

u
(1,1)
j,z











=

i
qj
mj

1

ω(−ω2 + Ω2
j)











−ω2 + Ω2
j cos2 θ −isjΩjω sin θ Ω2

j sin θ cos θ

isjΩjω sin θ −ω2 −isjΩjω cos θ

Ω2
j sin θ cos θ isjΩjω cos θ −ω2 + Ω2

j sin2 θ





















E
(1,1)
x

E
(1,1)
y

E
(1,1)
z











. (55)

See that the parallel (∼ x̂) component is decoupled from the perpendicular ones (∼ ŷ, ẑ) in

the case of parallel propagation, i.e. for θ = 0 (only). It is straightforward to show that the

latter system of equations then amounts to:

u
(1,1)
j =

Ze

m(ω2 − Ω2)

[

+sjiωE(1,1) − sji
Z2e2

m2c2ω
(E(1,1) · B0)B0 +

Ze

mc
B0 × E(1,1)

]

=
qj

m(ω2 − Ω2)

[

+iωE(1,1) − i
q2
j

m2c2ω
(E(1,1) · B0)B0 +

qj
mc

B0 × E(1,1)

]

=
qj

m(ω2 − Ω2)

[

+iωE(1,1) − i
Ω2

ω
(E(1,1) · b0)b0 + sjΩb0 × E(1,1)

]

, (56)

where qj = sjZe is the pair-ion species charge (sj = ±1) and

b0 = B0/B0 = (cos θ, 0, sin θ)T

is the unit vector along the magnetic field. The index j on the cyclotron frequency Ωj will

be dropped in the following, since Ω1 = Ω2 in the plasmas of interest here. Eq. (56) is

identical to (6) in [35] (upon a trivial change in notation).

C. A closed equation for the electric field E(11) (component amplitudes)

A closed equation may be obtained for the field E(1,1) in a concise vector form. Eliminating

the wave magnetic field B(1,1) between Eqs. (33) and (34) yields

(ω2 − c2k2)E(1,1) + c2(E(1,1) · k)k + 4πiZeω(n1,0u
(1,1)
1 − n2,0u

(1,1)
2 ) = 0 . (57)

Inserting the pair ion species’ velocities from (56) leads to the relation

[(ω2 − c2k2)(ω2 − Ω2) − ω2ω2
p,eff ]E

(1,1) + c2(ω2 − Ω2)(E(1,1) · k)k

+ω2
p,eff

(Ze)2

m2c2
(E(1,1) · B0)B0 + i(ω2

p,1 − ω2
p,2)

ωZe

mc
B0 × E(1,1) = 0 , (58)
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or

[(ω2 − c2k2)(ω2 − Ω2) − ω2ω2
p,eff ]E

(1,1) + c2(ω2 − Ω2)(E(1,1) · k)k

+ω2
p,effΩ

2(E(1,1) · b0)b0 + i(ω2
p,1 − ω2

p,2)ωΩ (b0 × E(1,1)) = 0 . (59)

Note that the last term in the rhs vanishes for pure pair plasmas (where, unlike our case

here, n1,0 = n2,0 implies ωp,1 = ωp,2), thus recovering exactly relation (8) in [35] (upon a

difference in notation and system of units). The latter equation is therefore generalized by

Eq. (59), in e-p-i (or asymmetic pair-ion) plasmas.

Alternatively, an equation for the electric field E(11) may be obtained by eliminating uj

and B in Ampère’s law (34). Substituting (33) and (54) into Eq. (34), one obtains:

k × (k × E(1,1)) = − ω

c2

(

ωI + 4πi
∑

j

nj,0qjM
−1
j

)

E(1,1) ,

= − ω

c2

[

ωI + 4πiZe (n1,0M
−1
1 − n2,0M

−1
2 )

]

E(1,1) . (60)

Here, I is the unit matrix; the matrices M−1
j were defined in (54). Note that the lhs is

k × (k × E(1,1)) = −k2E(1,1) + (E(1,1) · k)k = −k2
(

0, E(1,1)
y , E(1,1)

z

)T
.

Eq. (60) may be viewed as a closed algebraic system of (3) equations for the 3 components

of the electric field. It is straightforward to verify that this is tantamount to the concise

relation (58), and that the determinant quantity defined by the linear system (60) explicitly

coincides with the one derived above.

D. Exact solution for the 1st-order harmonic amplitudes

Relying on the above relations, and following the methodology described in Section IV,

we may now obtain exact expressions for the first harmonic amplitudes of all state variables

[47]. For convenience in the physical description, we shall express all quantities in terms

of the components of the (reduced) transverse magnetic field (perturbation) components

B′
y = B′(11)

y /B0 and B′
z = B′(11)

z /B0. Since the long procedure is perfectly straightforward,

only the final outcome will be provided below, thus omitting unnecessary details.

a. Preliminaries. First, recall that the densities are given, once the velocities are de-

termined, from (53). Eq. (33) gives

B(1,1)
x = 0 , B(1,1)

y = −ck
ω
E(1,1)

z , B(1,1)
z =

ck

ω
E(1,1)

y . (61)
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The electric field components perpendicular to the wave’s propagation direction are thus

readily given from Faraday’s law (61), which is here equivalent to

E
(1,1)
⊥ = ∓i ω

ck
B

(1,1)
⊥ , (62)

recalling the definitions (10) above. Also retain that the parallel (to propagation) electric

field component E
(1,1)
‖ = E

(1,1)
x is determined by the x− component of Ampère’s law (34) as

E(1,1)
x = −i4πe

ω

∑

j=1,2

sjZjnj,0u
(1,1)
j,x = −i4πZe

ω
(n1,0u

(1,1)
1,x − n2,0u

(1,1)
2,x ) . (63)

b. Exact solution. The linearized (1st order, 1st harmonic) problem for the state vari-

ables may be solved in terms of two freely evolving variables, among the 14 involved. For

reasons of physical interpretation, we have chosen these to be the transverse magnetic field

components, i.e. By and Bz.

The final solution the fluid variables takes the form

n
(11)
j = nj,0

k

ω
u

(11)
j,x = c

(11)
j,n,yB

′
y + c

(11)
j,n,zB

′
z ,

u
(11)
j,i = c

(11)
j,i,yB

′
y + c

(11)
j,i,zB

′
z (for j = 1, 2 and i = x, y, z) . (64)

The electric field components also take a similar form:

E
(11)
i = c

(11)
el,i,yB

′
y + c

(11)
el,i,zB

′
z (for i = x, y, z) . (65)

As previously said, Bx is stationary.

The analytical expressions for all of the coefficients c·,·,y/z can be found in the Appendix.

c. Brief discussion. Note that these expressions bear a number of interesting proper-

ties, reflecting inherent symmetries in the plasma constituents. For instance, it is straight-

forward to verify that, for parallel propagation, i.e. upon setting θ = 0 in the above re-

lations, one finds that no parallel fluid velocity perturbation occurs for parallel EM wave

propagation; the density and electric field perturbations also cancel, as a consequence, i.e.

n
(11)
1/2 = u

(11)
1/2,x = E

(11)
x = 0, for θ = 0. This is in agreement with the results in [14]; see

(B.6-8) therein.

On the other hand, still for parallel propagation, one finds for the perpendicular compo-

nents (∼ ŷ, ẑ) that

u
(11)
1,⊥ ∼

(

1 ± ω

Ω

)

B
(11)
⊥ and u

(11)
2,⊥ ∼

(

1 ∓ ω

Ω

)

B
(11)
⊥ (66)
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(for θ = 0 only), where the upper (lower) signs throughout this text correspond to left- (right-

) hand polarized waves. This nice property, which is due to the identical mass and absolute

charge of the two pair-ion species, is nevertheless destroyed in the oblique propagation case.

In a more general manner, for a “pure” pair plasma, i.e. for n1,0 = n2,0 (implying ωp,1 = ωp,2),

the circular polarization of parallel propagating EM waves degenerates into a combination

of orthogonal linear polarizations, as shown in Refs. [31, 35]). This result is recovered here.

E. On the zeroth harmonic amplitude (n = 1, l = 0)

The solution (for the state variables) anticipated above takes the form of a double series,

in order of perturbation (∼ ǫn) and also in the phase harmonic l (= 0, 1, ..., n). A fact

which is often neglected in perturbative studies of this kind, is the possibility of existence

of a zeroth-harmonic (“direct current”, DC) term, accounting for a non-oscillatory weak

perturbation from equilibrium.

For n = 1 and l = 0, from the Eq. of motion (2) we obtain:

E(1,0) = −1

c
u

(1,0)
j × B0 , (67)

for j = either 1 or 2. On the other hand, Eq. (4) provide the current neutrality condition
∑

j nj,0qju
(1,0)
j = 0, i.e. for the type of plasmas of interest to us (q2 = −q1):

n1,0u
(1,0)
1 = n2,0u

(1,0)
2 . (68)

In “pure” pair plasmas (no third species), charge neutrality at equilibrium (n1,0 = n2,0)

imposes a common fluid velocity u
(1,0)
1 = u

(1,0)
2 = u(1,0), prescribing the occurrence of a

finite constant electric field given by (67). The field components are given by E
(1,0)
i =

−1
c
ǫijku

(1,0)
j B0,k, where ǫijk is the Levi-Civita tensor elements (ǫ123 = ǫ231 = ǫ312 = 1, ǫ132 =

ǫ213 = ǫ321 = −1 and zero otherwise), i.e. in our reference frame: E
(1,0)
x = −B0

c
u(1,0) sin θ,

E
(1,0)
z = B0

c
u(1,0) cos θ, and E

(1,0)
y = −E(1,0)

x −E
(1,0)
z . See that overall charge neutrality (even

off equilibrium) is ensured by Poisson’s law (5).

In three-component e-p-i plasmas, where n1,0 6= n2,0, Eqs. (67) and (68) are only satisfied

if the zeroth harmonic vanishes.

In conclusion, the existence (however weak) of a streaming ion velocity u
(1,0)
j in “pure” (2

species) pair-ion plasmas may generate a zeroth-harmonic (non-propagating) electric field;
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this is true for any direction of EM wave propagation. On the other hand, no zeroth-harmonic

term arises in e-p-i (or asymmetric pair) plasmas.

VI. 2ND ORDER DYNAMICS (n = 2): HARMONIC GENERATION, SEC-

ONDARY HARMONIC AMPLITUDES, GROUP VELOCITY

The 2nd-order system bears a solution in the form:

S
(2)
i = S

(20)
i + (S

(21)
i exp i(kx− ωt) + c.c.) + (S

(22)
i exp 2i(kx− ωt) + c.c.) , (69)

where Si (for i = 1, 2, ..., 14, here) denotes any of the dynamical variables (components of

the state vector S) in play. We note the generation of secondary Fourier phase harmonics,

which is the “signature” of the self-modulation nonlinear mechanism, in addition to the

generation of a (weak, to order ∼ ǫ2) zeroth-harmonic (non-oscillating) contribution.

A. 2nd order first harmonics (n = 2, l = 1) & group velocity

Solution for the amplitudes. The equations obtained for n = 2 and l = 1 lead to a

solution in the form

n
(21)
j = c

(21)
j,n,TBy

∂B′
y

∂T1

+ c
(21)
j,n,XBy

∂B′
y

∂X1

+ c
(21)
j,n,TBz

∂B′
z

∂T1

+ c
(21)
j,n,XBz

∂B′
z

∂X1

,

u
(21)
j,i = c

(21)
j,i,TBy

∂B′
y

∂T1

+ c
(21)
j,i,XBy

∂B′
y

∂X1

+ c
(21)
j,i,TBz

∂B′
z

∂T1

+ c
(21)
j,i,XBz

∂B′
z

∂X1

, (70)

where j (= 1, 2) denotes the j−th fluid and i (= x, y, z) the respective velocity component,

here and below (the subscript notation, yet rather complicated, is obvious). The E/M field

components E
(22)
i (for i = x, y, z) and B

(22)
i (for i = y, z) also take a similar form:

E
(21)
i = c

(21)
el,i,TBy

∂B′
y

∂T1

+ c
(21)
el,i,XBy

∂B′
y

∂X1

+ c
(21)
el,i,TBz

∂B′
z

∂T1

+ c
(21)
el,i,XBz

∂B′
z

∂X1

,

B
(21)
i = c

(21)
B,i,TBy

∂B′
y

∂T1

+ c
(21)
B,i,XBy

∂B′
y

∂X1

+ c
(21)
B,i,TBz

∂B′
z

∂T1

+ c
(21)
B,i,XBz

∂B′
z

∂X1

. (71)

As previously mentioned, Bx is stationary, so B
(21)
x = 0. Furthemore, we assume that

E
(21)
x = B

(21)
y = B

(21)
z = 0, with no loss of generality (these variables are left arbitrary by

the algebra).

The (lengthy) expressions for the coefficients are omitted here.
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On the group velocity. The system of equations obtained for n = 2 and l = 1 yields a

compatibility condition, in order for secular terms to be annihilated. This requirement takes

the exact form:
∂B′

z

∂T1

+ vg
∂B′

z

∂X1

+ C

(

∂B′
y

∂T1

+ vg

∂B′
y

∂X1

)

= 0 , (72)

where vg denotes the group velocity ω′(k) = −(∂D/∂k)/(∂D/∂ω) [48], as it results from the

dispersion relation D(ω, k) = 0 obtained previously; the (dimensionless, complex) quantity

C will be defined below. The latter relation may be re-arranged as:
(

∂

∂T1

+ vg
∂

∂X1

)

(

B′
z + CB′

y

)

= 0 . (73)

We will shall henceforth assume that both quantities within parentheses in (72) cancel,

simultaneously. The physical meaning of this assumption is obvious: the amplitude(s) of

both transverse components of the magnetic field B propagate at the group velocity vg =

ω′(k), as physically expected. In other words, (all of) the slowly varying variable amplitudes

will be functions of a single traveling-wave variable, namely ξ = X1 − vgT1 ≡ ǫ(x− vgt).

It may be appropriate here to discuss the form of the complex quantity C, which “ponder-

ates” the relative contribution of the two transverse components to the travelling modulated

envelope (or, rather, determines their relative phase shift); cf. (73). The expression for C

reads:

C(ω, k; θ) = −2 i ωΩ (ω2
p,1 − ω2

p,2) cos θ
C1

C2

= 0 , (74)

where

C1 = 4c2k2(ω2 − Ω2)(ω2 − ω2
p,eff ) + 2Ω2ω2

p,eff (ω
2 − ω2

p,eff − c2k2) sin2 θ

and

C2 = 8c2k2(ω2 − Ω2)(ω2 − ω2
p,eff )[ω

2(ω2 − Ω2 − ω2
p,eff ) − c2k2(ω2 − Ω2)]

+4Ω2ω2
p,eff sin2 θ [2c4k4(ω2 − Ω2) − i ωΩ(ω2

p,1 − ω2
p,2)(ω

2 − ω2
p,eff − c2k2) cos θ] .

Interestingly, for parallel EM wave propagation (i.e. for θ = 0), C → ±i = e±iπ/2,

suggesting a phase difference of ±π/2 among By and Bz, specifically when the frequency ω

obeys

(ω ∓ Ω)
[

−(ω2 − c2k2)(ω − Ω) + ωω2
p,1

]

+ ω(ω ± Ω)ω2
p,2 = 0

(combining the upper/lower signs, respectively); cf. the (parallel EM wave) dispersion re-

lation (36). The slowly evolving transverse magnetic field component is then Bz ± iBy =
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±i(By ∓ iBz) ≡ ±iB∗
⊥ [recall definition (10c) above]. The anticipated circular polarization

encountered for modulated EM wavepackets propagating parallel to B0 (see e.g. in Ref.

[14]) in multi-component plasmas is thus recovered.

Note, for rigor, that the quantity C vanishes for perpendicular EM wave propagation (i.e.

for θ = π/2), for ωp,1 6= ωp,2, and also in the pure pair-ion plasma case (i.e. for ωp,1 = ωp,2,

∀ θ).

B. 2nd order 2nd-harmonics (n = 2, l = 2)

The system of equations obtained for n = 2 and l = 2 provides the amplitudes of the

second-harmonics. The solution reads:

n
(22)
j = c(22)nj ,yyB

′2
y + c(22)nj ,zzB

′2
z + c(22)nj ,yzB

′
yB

′
z

+c
(22)
nj ,y,T

∂B′
y

∂T1

+ c
(22)
nj ,y,X

∂B′
y

∂X1

+ c
(22)
nj ,z,T

∂B′
z

∂T1

+ c
(22)
nj ,z,X

∂B′
z

∂X1

,

u
(22)
j,i = c(22)uj,x,yyB

′2
y + c(22)uj,x,zzB

′2
z + c(22)uj,x,yzB

′
yB

′
z

+c
(22)
uj,x,y,T

∂B′
y

∂T1

+ c
(22)
uj,x,y,X

∂B′
y

∂X1

+ c
(22)
uj,x,z,T

∂B′
z

∂T1

+ c
(22)
uj,x,z,X

∂B′
z

∂X1

, (75)

where j (= 1, 2) denotes the j−th fluid and i (= x, y, z) the respective velocity component,

here and below (again, the subscript notation is obvious). The E/M field components E
(22)
i

(for i = x, y, z) and B
(22)
i (for i = y, z) take a similar form:

E
(22)
i = c

(22)
Ei,yyB

′2
y + c

(22)
Ei,zzB

′2
z + c

(22)
Ei,yzB

′
yB

′
z

+c
(22)
Ei,y,T

∂B′
y

∂T1

+ c
(22)
Ei,y,X

∂B′
y

∂X1

+ c
(22)
Ei,z,T

∂B′
z

∂T1

+ c
(22)
Ei,z,X

∂B′
z

∂X1

,

B
(22)
i = c

(22)
Bi,yyB

′2
y + c

(22)
Bi,zzB

′2
z + c

(22)
Bi,yzB

′
yB

′
z

+c
(22)
Bi,y,T

∂B′
y

∂T1

+ c
(22)
Bi,y,X

∂B′
y

∂X1

+ c
(22)
Bi,z,T

∂B′
z

∂T1

+ c
(22)
Bi,z,X

∂B′
z

∂X1

, (76)

Recall that Bx is stationary, thus B
(22)
x = 0.

The (particularly long) expressions for the coefficients in the above relations are omitted

here, for brevity.

C. 2nd order zeroth-harmonics (n = 2, l = 0)

The system of equations obtained for n = 2 and l = 0 provides the zeroth-harmonic

contributions to the variable amplitudes. Note that the density equations bear no zeroth-
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harmonic contribution, and neither does Faraday’s law; therefore, the density and magnetic

field perturbations (for n = 2, l = 0), viz. n
(20)
j and B

(20)
i (for j = 1, 2 and i = y, z; B

(20)
x = 0

is assumed), remain undetermined. The solution for the fluid velocities is of the form:

u
(20)
2,i =

ω2
p,2

ω2
p,1

u
(20)
2,i + c(20)uj,i,yy|B′

y|2 + c(20)uj,i,zz|B′
z|2 + c(20)uj,i,yzB

′
y
∗
B′

z + c(20)uj,i,zyB
′
yB

′
z
∗

(77)

(for i = x, y, z). The electric field components are:

E(20)
x = −

ω2
p,2

ω2
p,1

u
(20)
2,y

c
sin θ + c

(20)
Ex,yy|B′

y|2 + c
(20)
Ex,zz|B′

z|2 + c
(20)
Ex,yzB

′
y
∗
B′

z + c
(20)
Ex,zyB

′
yB

′
z
∗
,

E(20)
y =

ω2
p,2

ω2
p,1

1

c
(u

(20)
2,x sin θ − u

(20)
2,z cos θ)

+c
(20)
Ey ,yy|B′

y|2 + c
(20)
Ey ,zz|B′

z|2 + c
(20)
Ey ,yzB

′
y
∗
B′

z + c
(20)
Ey ,zyB

′
yB

′
z
∗

E(20)
z =

ω2
p,2

ω2
p,1

u
(20)
2,y

c
cos θ + c

(20)
Ez ,yy|B′

y|2 + c
(20)
Ez ,zz|B′

z|2 + c
(20)
Ez ,yzB

′
y
∗
B′

z + c
(20)
Ez ,zyB

′
yB

′
z
∗
, (78)

The long expressions for the coefficients c
(20)
uj,i,zy and c

(20)
Ei,yz appearing in the above relations

are omitted in this text. We may limit ourselves to pointing out, for rigor, that known limits

are recovered from the omitted expressions. For instance, for wave propagation parallel to

the magnetic field (i.e. for θ = 0), we find

u1

(20) =
ω2

p,2

ω2
p,1

u2

(20) (79)

and

E(20)
x = 0 , E(20)

y = −
ω2

p,2

ω2
p,1

u
(20)
2,z

c
, E(20)

z =
ω2

p,2

ω2
p,1

u
(20)
2,y

c
. (80)

Recall that ω2
p,2/ω

2
p,1 = n2,0/n1,0, i.e. unity in the pure p.p. limit.

VII. AMPLITUDE EVOLUTION EQUATION(S)

So far, we have obtained explicit expressions for the perturbative solution upto ∼ ǫ2, in

terms of the (arbitrary-valued) principal harmonic amplitude(s) appearing in ǫ1. Considering

the system of equations for n = 3 and l = 1, one needs to ensure that secular terms (i.e. terms

∼ ei(kx−ωt) in the rhs, entering in resonance with the null space – here exactly determined by

the linear dispersion obtained above) annihilate exactly, otherwise no long-lived analytical
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solution is possible. In a generic manner, this gives a compatibility condition to be imposed

on the 1st-harmonic amplitudes.

In general, the compatibility condition obtained for (n, l) = (3,= 1 takes the form of a

set of coupled nonlinear Schrödinger-type equations (CNLSEs):

i
∂By

∂τ
+ P

∂2By

∂ξ2
+Q11 |By|2By +Q12 |By|2Bz = 0 ,

i
∂Bz

∂τ
+ P

∂2Bz

∂ξ2
+Q22 |Bz|2Bz +Q21 |Bz|2By = 0 , (81)

where the slow time scale is τ = ǫ2t and the moving envelope space coordinate is ξ =

ǫ(x − vgt). The dispersion coefficient is P = ω′′(k)/2, while the nonlinearity and coupling

coefficients, Qii and Qij ( here i, j = 1, 2, and j 6= 1 is understood). All coefficients in Eqs.

(81) are perplex functions of the wavenumber k and the angle θ, and also depend on intrinsic

plasma parameters (ωp,1/2, Ω). The long expressions are omitted here.

Interestingly, for certain values of θ, one may show after a tedious calculation that Eqs.

(81) reduce to a single NLS equation

i
∂B̃⊥

∂τ
+ P

∂2B̃⊥

∂ξ2
+Q |B̃⊥|2B̃⊥ = 0 , (82)

where B̃⊥ = Bz +CBy (remember that C is a complex quantity, defined in (74) above) and

Q = Q22. Admittedly, the passing from Eqs. (81) to Eq. (82) (which requires a particularly

tedious calculation, and should be confirmed specifically for a given value of interest for the

angle θ), although certainly simplifies the algebra, adds nothing to the physics of the EM

wave modulation phenomenon we aim at describing here. It may be stated, for rigor, that

in other physical contexts, the set of coupled NLS Eqs. (81) provides a rich dynamics and,

potentially, a higher instability growth rate than the single NLS Eq. (81); see e.g. in [40]

for details.

For the sake of simplicity, we shall limit ourselves to Eq. (82) in the following, in view

of an investigation of the modulational stability profile of the EM wave, and a study of the

occurrence of wave localization via the formation of localized modulated envelope excitations

(envelope solitons). A similar investigation may be carried on the basis of the set of Eqs.

(81); the associated stability analysis and coupled solitary-wave solutions are reviewed e.g.

in Refs. [40–42], and will be omitted here.
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FIG. 6: The nonlinearity (left column) and dispersion (right column) coefficients in the NLS

Eq. (82) for parallel EM wave propagation (θ = 0) are plotted against the reduced frequency

f = ω/Ω: (a) Pure pair plasma [η = 0; recall def. in (38)] - linear polarization (1st row); (b)

Three-component pair plasma (η = 0.5) - left-hand polarization (2nd row); (c) Three-component

pair plasma (η = 0.5) - right-hand polarization (3rd row). Note the frequency gap near f = 1, i.e.

near ω = Ω; cf. Fig. 5.

VIII. MODULATIONAL (IN)STABILITY ANALYSIS

It is known (see e.g. in [4, 43]) that the evolution of a wave whose amplitude obeys Eq.

(82) depends on the coefficient product PQ, which may be investigated in terms of the phys-
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FIG. 7: Bright type modulated wavepackets (for PQ > 0), for two different (arbitrary) sets of

parameter values.

ical parameters involved. To see this, first check that Eq. (82) supports the plane (Stokes’)

wave solution ψ = ψ0 exp(iQ|ψ0|2T ); the standard linear analysis consists in perturbing

the amplitude by setting: ψ̂ = ψ̂0 + ǫ ψ̂1,0 cos (k̃X − ω̃T ) (the perturbation wavenumber k̂

and the frequency ω̂ should be distinguished from their carrier wave homologue quantities,

denoted by k and ω). One thus obtains the (perturbation) dispersion relation:

ω̃2 = P k̃2 (P k̃2 − 2Q|ψ̂1,0|2) . (83)

One immediately sees that if PQ > 0, the amplitude ψ is unstable for k̃ <
√

2Q/P |ψ̂1,0|; i.e.

for perturbation wavelengths larger than a critical value. If PQ < 0, the amplitude ψ will be

stable to external perturbations. This modulational instability mechanism is tantamount to

the well-known Benjamin-Feir instability, in hydrodynamics, also long-known as an energy

localization mechanism in solid state physics and nonlinear optics [4, 43].

This type of analysis allows for a numerical investigation of the stability profile in terms of

intrinsic plasma parameters, e.g. wavenumber k, obliqueness angle θ, plasma and cyclotron

frequencies ωp,1/2 and Ω, etc.

IX. ENVELOPE EXCITATIONS

The evolution equation (82) is known to be integrable [4, 43]. Localized solutions can

be rigorously obtained via the tedious Inverse Scattering Transform method; these are,

properly speaking, solitons, in the sense that they satisfy an infinity of conservation laws;

they have been shown analytically (and confirmed numerically) to survive collisions between

one another and also exhibit a robust behaviour against external perturbations.

The modulated (electrostatic potential) wave finally resulting from the above analysis is
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of the form[49]

φ
(1)
1 = ǫψ̂0 cos(kr − ωt+ Θ) + O(ǫ2) .

The slowly varying amplitude ψ0(ξ, τ) and phase correction Θ(ξ, τ) (both real functions of

{ξ, τ}; see in [44] for details) are determined by (solving) Eq. (82) for ψ = ψ0 exp(iΘ). The

different types of solution thus obtained are summarized in the following.

A. Bright-type envelope solitons

For positive PQ, the carrier wave is modulationally unstable; it may either collapse, due

to (possibly random) external perturbations, or lead to the formation of bright envelope

modulated wavepackets, i.e. localized envelope pulses confining the carrier (see Fig. 7),

which are given by [44]

ψ0 =

(

2P

QL2

)1/2

sech

(

ξ − ve τ

L

)

, Θ =
1

2P

[

veξ +

(

Ω − v2
e

2

)

τ

]

, (84)

where ve is the envelope velocity; L and Ω represent the pulse’s spatial width and oscillation

frequency (at rest), respectively. We note that L and ψ0 satisfy Lψ0 = (2P/Q)1/2 = constant

(in contrast with KdV solitons [4], where L2ψ0 = const. instead). Also, the amplitude ψ0 is

independent of the pulse (envelope) velocity ve here.

B. Black-type envelope solitons

For PQ < 0, the carrier wave is modulationally stable and may propagate as a dark (black

or grey) envelope wavepackets, i.e. a propagating localized hole (a void) amidst a uniform

wave energy region. The exact expression for dark envelopes reads [44]:

ψ0 = ψ′
0

∣

∣

∣

∣

tanh

(

ξ − ve τ

L′

)∣

∣

∣

∣

, Θ =
1

2P

[

veξ +
(

2PQψ′
0
2 − v2

e

2

)

τ
]

(85)

(see Fig. 8a); again, L′ψ′
0 = (2|P/Q|)1/2 (=cst.).

C. Grey-type envelope solitons

The grey-type envelope (also obtained for PQ < 0) is given by [44]

ψ0 = ψ′′
0

[

1 − d2 sech2

(

ξ − ve τ

L′′

)]1/2

31



-60 -40 -20 20 40 60

-1

-0.5

0.5

1

-60 -40 -20 20 40 60

-1

-0.5

0.5

1

FIG. 8: Dark-type modulated wavepackets (for PQ < 0) of the black (left) and grey (right) kind.

See that the amplitude never reaches zero in the latter case.

and

Θ =
1

2P

[

V0 ξ −
(

1

2
V 2

0 − 2PQψ′′2
0

)

τ + Θ0

]

− S sin−1 d tanh
(

ξ−ve τ
L′′

)

[

1 − d2 sech2

(

ξ−ve τ
L′′

)]1/2
. (86)

Here Θ0 is a constant phase; S denotes the product S = sign(P ) × sign(ve − V0). The pulse

width L′′ = (|P/Q|)1/2/(dψ′′
0) now also depends on the real parameter d, given by:

d2 = 1 + (ve − V0)
2/(2PQψ′′2

0) ≤ 1 .

The (real) velocity parameter V0 = const. satisfies [44]:

V0 −
√

2|PQ|ψ′′2
0 ≤ ve ≤ V0 +

√

2|PQ|ψ′′2
0 .

For d = 1 (thus V0 = ve), one recovers the dark envelope soliton.

X. ON MODULATIONAL (IN)STABILITY OF ES WAVES IN PAIR PLASMAS

The coefficients of the NLSE (82) are depicted in Fig. 6, for the case of θ = 0, i.e. for

EM wave propagation parallel to the external magnetic field. Note the forbidden frequency

region (gap) near f = 1 (i.e. near ω = Ω); cf. Fig. 5. We see that, for pure p.p. (for

η = 0, i.e. in the absence of a third species), the coefficient product PQ is positive at small

frequencies (i.e. for the Alfvén type p.p. mode lying below the cyclotron frequency Ω),

thus prescribing modulational instability and bright-type envelope excitations. However,

PQ becomes negative as one approaches f = 1 from below, so high frequency waves will

tend to be stable, and propagate as dark-type envelope solitons (envelope holes). A similar

alternating (positive, then negative) behavior is obtained by gradually increasing ω (above

Ω).
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By “switching-on” the existence of the 3rd massive background species, the product PQ

(αβ in Fig. 6), becomes negative for low a frequency, thus apparently stabilizing the two

sub-cyclotron modes (see in Fig. 5). This is due to a shift in sign of the dispersion coefficient

(right column in Fig. 6, 2nd and 3rd rows) at low ω. We have seen (cf. Fig. 5) that the

linearly polarized “pure” p.p. EM acoustic mode splits into two modes (one presenting a

gap; see Fig. 5b) if a 3rd species is present. Both of these mode, namely a left-hand- and a

right-hand-polarized one, exhibit the described behavior.

XI. SUMMARY AND CONCLUSIONS

To summarize, we have considered the propagation of nonlinear amplitude-modulated EM

wavepackets in a multi-component plasma. By adopting a reductive-perturbation method,

we have shown how secondary harmonic generation, modulational instability and envelope

soliton formation may be modeled efficiently via a multiple scale analysis.

Focusing on EM modes propagating in pair plasmas, we have shown that the modulational

stability and the type of excitation which may occur in such plasmas may be predicted by the

perturbation theory presented above. The presence of a third massive species (in “doped”

pair-ion plasmas, or e-p-i plasmas) may affect the stability profile of EM waves. For instance,

it stabilizes parallel EM Alfvén-like waves, which now recover circular polarization (lost in

ideal p.p., where the respective mode is linearly polarized).

33



Acknowledgments

Funding from the FWO (Fonds Wetenschappelijk Onderzoek-Vlaanderen, Flemish Re-

search Fund) during the course of this work is gratefully acknowledged.

This work was carried out during a short-term Research Associate appointment at the

University of Gent, Belgium. Prof. F. Verheest is herewith warmly thanked for initiating,

hosting and supervising this research visit. My gratitude and appreciation goes to Dr. T.

Cattaert, for long scientific discussions and friendly support.

This manuscript is essentially an abbreviated (yet more pedagogically aimed) version of

a (more concise) text, to appear as a published research article soon.

Figure 1 is reprinted from: O. Santolik, D. A. Gurnett, J. S. Pickett, M. Parrot, and N.

Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus, J. Geophys. Res. 108,

1278/1-14 (2003); Copyright [2003] American Geophysical Union; reproduced by permission

of the American Geophysical Union.

Figure 2 is reprinted from: Ya. Alpert, Resonance nature of the magnetosphere, Physics

Reports 339, 323-444 (2001); Copyright [2001] Elsevier; reproduced by permission of Else-

vier.

Figure 3 is reprinted from: R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier,

C. W. Carlson, J. P. McFadden, and I. Roth, Modulated electron-acoustic waves in auroral

density cavities: FAST observations, Geophysical Research Letters 26 (16) 2629-2632 (1999);

Copyright [1999] American Geophysical Union; reproduced by permission of the American

Geophysical Union.

Figure 4 was reprinted from [5].

Figures 5 and 6 were reprinted from [37].

34



[1] O. Santolik, D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin, J. Geophys.

Res. 108, 1278/1-14 (2003).

[2] Ya. Alpert, Physics Reports 339, 323-444 (2001).

[3] R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden,

and I. Roth, Geophysical Research Letters 26 (16) 2629-2632 (1999).

[4] T.Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press (2005).

[5] See the ICTP SMR1673/2005 Lecture Notes (3 distinct parts) by F. Verheest at:

http://cdsagenda5.ictp.trieste.it/full display.php?ida=a04206.

[6] H. Washimi and V.I. Karpman, Sov. Phys. JETP bf 44, 528 (1977).

[7] P. K. Shukla and L. Stenflo, in Pulsars: Problems and Progress, edited by S. Johnston, M. A.

Walker, and M. Bailes, ASP Conference Series 105, 171 (1996).

[8] T. Cattaert, I. Kourakis and P. K. Shukla, Physics of Plasmas 12 (1), 012319/1-6 (2005).

[9] I. Kourakis and P. K. Shukla, Nonlinear Processes in Geophysics 12, 441 (2005).

[10] T. Taniuti and N. Yajima, J. Math. Phys. 10, 1369, 1969; N. Asano, T. Taniuti and N. Yajima,

J. Math. Phys. 10, 2020, 1969.

[11] I. Kourakis and P. K. Shukla, Nonlinear Processes in Geophysics 12, 407 (2005).

[12] I. Kourakis, A. Esfandyari-Kalejahi, M. Mehdipoor and P.K. Shukla, Physics of Plasmas 13

(5), 052117/1-9 (2006); A. Esfandyari-Kalejahi, I. Kourakis and P. K. Shukla, 13th Int. Cong.

Plasma Phys. (ICPP06, Kiev, 2006); I. Kourakis, A. Esfandyari-Kalejahi and P. K. Shukla,

33th EPS Conf. Plasma Phys. (Rome, 2006), paper P4.057.

[13] Hasegawa, A., Phys. Rev. A 1 (6), 1746 (1970); Hasegawa, A., Phys. Fluids 15 (5), 870 (1972).

[14] S. Irie and Y. Ohsawa, J. Phys. Soc. Japan 70(6), 1585 (2001).

[15] V. L. Ginzburg, Sov. Phys. Usp. 14, 83 (1971); P. A. Sturrock, Astrophys. J. 164, 529 (1971).

[16] M. A. Ruderman and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

[17] R. N. Manchester and J. H. Taylor, Pulsars (Freeman, San Francisco, 1977).

[18] F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

[19] F. C. Michel, Theory of neutron Star Magnetospheres (University of Chicago Press, Chicago,

1991); see also many articles in Pulsars: Problems and Progress, edited by S. Johnston, M.

A. Walker, and M. Bailes, Astrophysical Society (ASP) of the Pacific Conference Series 105

35



(ASP, San Francisco, 1996).

[20] H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer-Verlag, Berlin, 1987), p. 202;

M. C. Begelman, R. D. Blandford, and M. D. Rees, Rev. Mod. Phys. 56, 255 (1984).

[21] M. L. Burns, in Positron-Electron Pairs in Astrophysics, edited by M. L. Burns, A. K. Harding,

and R. Ramaty (American Institute of Physics, New York, 1983).

[22] G. W. Gibbons, S. W. Hawking and S. Siklos, The Very Early Universe (Cambridge University

Press, Cambridge, 1983).

[23] E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998); C. Gahn, G. D.

Tsakiris, G. Pretzler et al., Appl. Phys. Lett. 77, 2662 (2000).

[24] R. G. Greaves, M. D. Tinkle and C. M. Surko, Phys. Plasmas 1, 1439 (1994); J. Zhao, J. I.

Sakai and K. Nishikawa, Phys. Plasmas 3, 844 (1996); R. G. Greaves and C. M. Surko, Phys.

Rev. Lett. 75, 3846 (1995).

[25] P. Helander and D. J.Ward, Phys. Rev. Lett. 90, 135004 (2003).

[26] W. Oohara and R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003); W. Oohara, D. Date

and R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005).

[27] N. A. Krall and A. W. Trivelpiece, Principles of plasma physics, McGraw - Hill N.Y. (1973).

[28] D.G. Swanson, Plasma Waves, (Academic Press, New York, 1989).

[29] Th. Stix, Waves in Plasmas, American Institute of Physics, New York (1992).

[30] N. Iwamoto, Phys. Rev. E 47, 604 (1993).

[31] G. P. Zank and R. G. Greaves, Phys. Rev. E 51, 6079 (1995).

[32] J. Sakai and T. Kawata, J. Phys. Soc. Japan 49, 753 (1980).

[33] F. Verheest, Phys. Lett. A 213, 177 (1996).

[34] J. Zhao, K. Nishikawa, J. I. Sakai, Phys. Plasmas 1, 103 (1994).

[35] F. Verheest and T. Cattaert, Phys. Plasmas 12, 032304 (2005).

[36] H. Hasegawa and Y. Ohsawa, J. Phys. Soc. Japan 73(7), 1764 (2004).

[37] N. Cramer, Proc. EPS 33 (Rome), paper D2.001 (2006).

[38] Notice that, since Bx =cst. is prescribed, the number of dynamical state variables (state vector

elements, see above) is thus reduced by one (i.e., one of the 14 equations in the dynamical

system of evolution may be omitted, since trivially satisfied).

[39] Upon a trivial difference in notation, though: see that ω2
p,eff = ω2

p,1 + ω2
p,2 here is denoted by

ω2
p in Refs. [35] and [37].

36



[40] I. Kourakis and P.K. Shukla, European Physical Journal B, 50, 321 (2006); extended version

at: http://arxiv.org/abs/nlin.PS/0510029v1.

[41] I. Kourakis, P. K. Shukla and G.E. Morfill, New Journal of Physics 7, 153 (2005).

[42] I. Kourakis, P. K. Shukla and G.E. Morfill, Physics of Plasmas 12, 082303 (2005).

[43] A. Hasegawa, Plasma Instabilities and Nonlinear Effects (Springer-Verlag, Berlin, 1975).

[44] R. Fedele and H. Schamel, Eur. Phys. J. B27, 313 (2002).

[45] By choosing an appropriate reference frame, the number of free state variables can be further

reduced; see below.

[46] Essentially, one expects (and so do things usually come out to be) a finite harmonic contribu-

tion in the form:

S
(n)
j =

n
∑

l=−n

S
(n,l)
j (X, T ) exp [il(kx− ωt)] ,

i.e.

S
(1)
j = S

(1,0)
j + [S

(1,1)
j ei(kx−ωt) + c.c.] ,

S
(2)
j = S

(2,0)
j + [S

(2,1)
j ei(kx−ωt) + c.c.] + [S

(2,2)
j e2i(kx−ωt) + c.c.] ,

and so forth.

[47] A brief note may be added, about the Irie & Ohsawa paper (Ref. [14]). These authors make

the ad hoc assumption [see in (B.4) - (B.8) therein] E
(1)
x = u

(1)
x = 0 (starting at ǫ2), but

E
(1)
⊥ = u

(1)
⊥ 6= 0 (starting at ǫ1), without explaining why. We have chosen to make no limiting

assumption here, and rather let the algebra determine the variable components which may be

allowed in the system. However, as our analysis proceeds, it turns out that the assumptions by

Irie and Ohsawa are indeed confirmed, yet only for EM wave propagation along the magnetic

field, i.e. for θ = 0.

[48] In specific, differentiating D(ω(k), k) = 0 with respect to k gives:

∂D

∂k
+
∂D

∂ω

dω

dk
= 0 , hence

dω

dk
= −

∂D
∂k
∂D
∂ω

.

[49] In fact, the potential correction amplitude here is ψ̂0 = 2ψ0, from Euler’s formula: eix+e−ix =

2 cosx (x ∈ ℜ).

37



APPENDIX A: SOLUTION FOR n = 1, l = 1.

The final solution of the linearized (1st order, 1st harmonic) problem for the fluid variables

takes the form of Eqs. (64) and (65), in the text.

The coefficients cj,i,y/z for the (i =) x, y and z velocity components of the j−th fluid (1,

2) are defined as

c
(11)
j,x,y = i(−1)j+1 ω2Ω3 sin θ cos θ

k [ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ]

=
ω

knj,0

c
(11)
j,n,y , (A1)

c
(11)
j,x,z =

Ω2 sin θ

k (ω2 − Ω2)
[

ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ
] ×

{

−ω3(ω2 − Ω2 − ω2
p,eff ) + iΩω2

p,eff cos θ
[

(−1)j+1ω2 + Ω cos θ(iω + (−1)jΩ cos θ)
]}

=
ω

knj,0

c
(11)
j,n,z (A2)

(j, j′ = 1, 2 and j′ 6= j will be henceforth understood everywhere),

c
(11)
j,y,y =

ωΩ2(ω2 − ω2
p,eff ) cos θ

k [ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ]
(A3)

c
(11)
j,y,z =

Ωω

k (ω2 − Ω2)

[

i(−1)j+1ω +
Ω3ω2

p,eff cos θ sin2 θ

ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ

]

(A4)

and

c
(11)
j,z,y = i (−1)j

ω2Ω(ω2 − ω2
p,eff − Ω2 sin2 θ)

k [ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ]

c
(11)
j,z,z =

Ω2
{

ω3(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos θ(ω cos θ + i(−1)jΩ sin2 θ)
}

cos θ

k (ω2 − Ω2)
[

ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ
] .(A5)

The electric field components bear a similar structure

E
(11)
i = c

(11)
el,i,yB

′
y + c

(11)
el,i,yB

′
z , (A6)

for i = x, y or z, where

c
(11)
el,x,y = c

(11)
el,x,z =

ωΩ2ω2
p,eff sin θ cos θ

ck[ω2(ω2 − Ω2 − ω2
p,eff ) + Ω2ω2

p,eff cos2 θ]
,

c
(11)
el,y,y = c

(11)
el,z,z = 0

c
(11)
el,y,z = −c(11)el,z,y =

ω

ck
. (A7)
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Finally, one may consider the obvious definitions c
(11)
B,x,y = c

(11)
B,x,z = c

(11)
B,y,z = c

(11)
B,z,y = 0 and

c
(11)
B,y,y = c

(11)
B,z,z = 1.

As a by-product, a number of relations relating the fluid variables to the E/M field

components are also obtained. These may be of use in comparing our theoretical findings

to experimental or Space observations. In specific, we have

u
(11)
j,i = cj,i,elE

′
x + cj,i,byB

′
y + cj,i,bzB

′
z , (A8)

for the i−th component (= x, y, z) of the j− (= 1, 2) fluid velocity; the density is then given

by

n
(11)
j = nj,0

ω

k
u

(11)
j,x ,

so that the corresponding coefficients are obvious. The coefficients cj,i,† (for † = el, by, bz)

read

cj,x,el = i (−1)j+1 cΩ (ω2 − Ω2 cos2 θ)

ω(ω2 − Ω2)
,

cj,x,by = i (−1)j+1 Ω3

k(ω2 − Ω2)
sin θ cos θ ,

cj,x,bz = − ωΩ2 sin θ

k(ω2 − Ω2)
,

cj,y,el =
cΩ2 sin θ

ω2 − Ω2
,

cj,y,by =
ωΩ2 cos θ

k(ω2 − Ω2)
,

cj,y,bz = i (−1)j+1 ω2Ω

k(ω2 − Ω2)
,

cj,z,el = i (−1)j cΩ3

ω(ω2 − Ω2)
sin θ cos θ ,

cj,z,by = i (−1)j Ω (ω2 − Ω2 sin2 θ)

k(ω2 − Ω2)
,

cj,z,bz =
ωΩ2 cos θ

k(ω2 − Ω2)
, (A9)

where j = 1 or 2 is understood.
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