International Workshop on Frontiers of Plasma Science Abdus Salam International Centre for Theoretical Physics, 28 Aug. 2006

Modulated Envelope Wavepackets in *Pair-Ion* and *e-p-i* Plasmas

Ioannis Kourakis

Universiteit Gent, Sterrenkundig Observatorium, Krijgslaan 281, B-9000 Gent, Belgium www.tp4.rub.de/~ioannis

In collaboration with: (EM) F Verheest, N Cramer; (ES) P K Shukla, R Esfandyari-Kalejahi.

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf

Outline

Introduction

- Amplitude Modulation: definition;
- Relevance with space and laboratory observations;
- Pair-ion and e-p-i plasmas: Prerequisites.
- □ Part A: Fluid model for ES waves in *p.p.*
 - The reductive perturbation (multiple scales) formalism.
 - Modulational instability (MI) & envelope excitations.
- □ Part B: EM waves in *p.p.*.
- □ Conclusions.

Intro.: The mechanism of wave amplitude modulation The amplitude of a harmonic wave may vary in space and time:

This *modulation* (due to nonlinearity) may be *strong* enough to lead to wave *collapse* (modulational instability) or to the formation of *envelope solitons*:

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf

Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

Modulated structures occur widely in Nature, e.g. in oceans (freak waves, or rogue waves) ...

Fig. 2. Various photos of rogue waves.

(from: [Kharif & Pelinovsky, Eur. Journal of Mechanics B/Fluids **22**, 603 (2003)]) www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf *Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006*

... during surface wave reconstitution in water basins, ...

(from: [Klauss, Applied Ocean Research 24, 147 (2002)])

(from: [Ya. Alpert, Phys. Reports **339**, 323 (2001)]) www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf

Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

..., in satellite (e.g. CLUSTER, FAST, ...) observations:

Figure 2. Left: Wave form of broadband noise at base of AKR source. The signal consists of highly coherent (nearly monochromatic frequency of trapped wave) wave packets. Right: Frequency spectrum of broadband noise showing the electron acoustic wave (at ~ 5 kHz) and total plasma frequency (at ~ 12 kHz) peaks. The broad LF maximum near 300 Hz belongs to the ion acoustic wave spectrum participating in the 3 ms modulation of the electron acoustic waves.

(*) From: O. Santolik *et al.*, *JGR* **108**, 1278 (2003); R. Pottelette *et al.*, *GRL* **26** 2629 (1999). www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf *Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006* *Modulational instability (MI)* was observed in simulations, e.g. early (1972) numerical experiments of EM cyclotron waves:

[from: A. Hasegawa, PRA 1, 1746 (1970); Phys. Fluids 15, 870 (1972)]. www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

Spontaneous MI has been observed in experiments,:

e.g. on ion acoustic waves

[from: Bailung and Nakamura, J. Plasma Phys. 50 (2), 231 (1993)]. www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

Questions to be addressed in this brief presentation:

- The Formalism: How can one describe the (slow) evolution (*modulation*) of a wave *amplitude* in space and time?
- Can Modulational Instability (MI) of plasma "fluid" modes be predicted by a simple, tractable analytical model?
- Can envelope modulated localized structures (such as those observed in space and laboratory plasmas) be modeled by an exact theory?
- Focus: Modulated electrostatic (ES) and electromagnetic (EM) waves in pair plasmas.

Pair-ion plasmas: prerequisites (1)

□ Electron-ion plasmas:

- electrons
$$e^-$$
 (charge $-e$, mass m_e),

 $-ions i^+$ (charge $+Z_i e$, mass $m_i \gg m_e$),

□ Intrinsic features (that we have long *taken for granted*):

- Distinct electron/ion frequency scales, e.g.

$$\omega_{p,s} = \left(\frac{4\pi n_s q_s^2}{m_s}\right)^{1/2}, \qquad \omega_{c,s} = \frac{q_s B}{m_s c} \qquad (s = e, i)$$

hence

 $\omega_{p,e}\gg\omega_{p,i}$, $\omega_{c,e}\gg\omega_{c,i}$.

- Longevity (recombination neglected, no overall density variation).

Pair-ion plasmas: prerequisites (2)

□ Pair-ion plasmas:

- Positive ions i^+ (charge +Ze, mass m),
- Negative ions i^- (charge -Ze, mass m),
- -... (heavier ions, in a multi-component eg. *e-p-i* composition).

□ No (pair-ion) frequency separation: $\omega_{p,+} \approx \omega_{p,-}$ $\omega_{c,+} = \omega_{c,-}$.

□ New Physics:

--- Novel (linear) ES/EM mode profile [lwamoto PRE 1989, Stewart & Laing JPP 1992, Zank & Greaves PRE 1995].

- No Faraday rotation.

 \rightarrow Talk(s) (and Lecture Notes) by F. Verheest and H. Saleem.

Pair-ion plasmas: prerequisites (3)

Magnetized electron-positron (e-p) and e-p-i plasmas exist:

- in pulsar magnetospheres [Ginzburg 1971, Michel RMP 1982],
- in bipolar outflows (jets) in active galactic nuclei (AGN)

```
[Miller 1987, Begelman RMP 1984]
```

- at the center of our own galaxy [Burns 1983],
- in the early universe [Hawking 1983],
- in inertial confinement fusion schemes [Liang et al. PRL 1998]
- in (very sophisticated, yet short-lived) experiments
 [Greaves, Surko et al. PoP 1994, Zhao et al. PoP 1996].

Description Plasmas (p.p.) have been formed in laboratory,

- in recent fullerene ion (C_{60}^{\pm}) experiments [Oohara & Hatakeyama PRL 2003].

Part A: Two-fluid model for ES waves in pair plasma or e-p-i plasma Fluid Eqs. (for $j = 1^+, 2^-$):

an

$$\frac{\partial n_j}{\partial t} + \nabla \cdot (n_j \,\mathbf{u}_j) = 0$$
$$\frac{\partial \mathbf{u}_j}{\partial t} + \mathbf{u}_j \cdot \nabla \mathbf{u}_j = -s_j \frac{Ze}{m} \nabla \phi - \frac{1}{mn_j} \nabla p_j$$

 $p_j=Cn_j^\gamma, \qquad p_{j,0}=n_{j,0}k_BT_j\,, \qquad \gamma=1+2/f\,, \qquad s_j=q_j/|q_j|=\pm 1$ Poisson's eq.

$$\nabla^2 \Phi = -4\pi \sum_s q_s n_s = 4\pi e \left(Z n_- - Z n_+ - s_3 Z_3 n_3 \right)$$

Neutrality hypothesis: $Z n_{+,0} - Z n_{-,0} + s_3 Z_3 n_3 = 0$ ($n_3 = \text{cst.}$).
 3^{\pm} : a massive (*immobile*) background species, eg. $3 = i^+$ in *epi* plasmas.

"Pure" p.p.: $n_3 = 0$, i.e. $n_{+,0} = n_{-,0}$, whereas $e^-p^+i^+$ or $X^+X^-d^{\pm}$: $n_3 \neq 0$. www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

Reductive Perturbation Technique

- 1st step. Define *multiple scales* (*fast* and *slow*) i.e. (in 2d)

 $\mathbf{r}_0 = \mathbf{r}, \quad \mathbf{r}_1 = \epsilon \mathbf{r}, \quad \mathbf{r}_2 = \epsilon^2 \mathbf{r}, \quad \dots$ $T_0 = t, \quad T_1 = \epsilon t, \quad T_2 = \epsilon^2 t, \quad \dots$ $\mathbf{r} = (x, y, z)$

- 2nd step. Expand near equilibrium:

$$n_{j} \approx n_{j,0} + \epsilon n_{j,1} + \epsilon^{2} n_{j,2} + \dots$$
$$\mathbf{u}_{j} \approx \mathbf{0} + \epsilon \mathbf{u}_{j,1} + \epsilon^{2} \mathbf{u}_{j,2} + \dots$$
$$\phi \approx \mathbf{0} + \epsilon \phi_{1} + \epsilon^{2} \phi_{2} + \dots$$

 $(\epsilon \ll 1).$

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

(1)

Reductive perturbation technique (continued)

- 3rd step. Project on Fourier space, i.e. consider $\forall m = 1, 2, ...$

$$S_m = \sum_{l=-m}^m \hat{S}_l^{(m)} e^{il(\mathbf{k}\cdot\mathbf{r}-\omega t)} = \hat{S}_0^{(m)} + 2\sum_{l=1}^m \hat{S}_l^{(m)} \cos l(\mathbf{k}\cdot\mathbf{r}-\omega t)$$

for $S_m \in (n_m, \mathbf{u}_m, \phi_m)$, i.e. essentially:

$$n_1 = n_0^{(1)} + \tilde{n}_1^{(1)} \cos \theta$$
, $n_2 = n_0^{(2)} + \tilde{n}_1^{(2)} \cos \theta + \tilde{n}_2^{(2)} \cos 2\theta$, etc

Reductive perturbation technique (continued)

– 3rd step. Project on Fourier space, i.e. consider $\forall m = 1, 2, ...$

$$S_m = \sum_{l=-m}^m \hat{S}_l^{(m)} e^{il(\mathbf{k}\cdot\mathbf{r}-\omega t)} = \hat{S}_0^{(m)} + 2\sum_{l=1}^m \hat{S}_l^{(m)} \cos l(\mathbf{k}\cdot\mathbf{r}-\omega t)$$

- 4rth step. (for multi-dimensional propagation) *Modulation obliqueness*: the slow amplitudes $\hat{\phi}_l^{(m)}$, etc. vary *only along* the *x*-axis:

 $\hat{S}_{l}^{(m)} = \hat{S}_{l}^{(m)}(X_{j}, T_{j}), \qquad j = 1, 2, \dots$

while the fast carrier phase $\theta = \mathbf{k} \cdot \mathbf{r} - \omega t$ is now (in 2d):

$$k_x x + k_y y - \omega t = k r \cos \alpha - \omega t$$
.

→ Poster on oblique modulation of ES waves by R. Esfandyari-Kalejahi et al.
www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

First-order solution ($\sim \epsilon^1$)

 $\Box \text{ Dispersion relation } \omega = \omega(k), \text{ for } \omega \leftarrow \frac{\omega}{\omega_{p,-}}, \quad k \leftarrow k\lambda_{D,-} = \frac{k T_-^{1/2}}{m^{1/2} \omega_{p,-}}:$

$$\omega_1^2 \approx c_s k^2 \,, \qquad \qquad \omega_2^2 \approx \omega_0^2 + c_s k^2 \,,$$

where: $\beta = n_{+,0}/n_{-,0}, \qquad \sigma = T_+/T_- \qquad (\beta \to 1: \text{p.p.})$ and

$$\omega_0^2 = (1+\beta)\omega_{p,-}^2, \qquad c_s^2 = 3\beta \frac{1+\sigma\beta}{1+\beta} \frac{T_-}{m}$$

□ The *solution(s)* for the 1st–harmonic amplitudes (e.g. $\propto \phi_1^{(1)}$):

$$n_{+,1}^{(1)} = \frac{\beta k^2}{\omega^2 - 3\sigma\beta^2 k^2} \phi_1^{(1)} = \frac{\beta k}{\omega} u_{+,1}^{(1)}, \qquad n_{-,1}^{(1)} = -\frac{k^2}{\omega^2 - 3k^2} \phi_1^{(1)} = \frac{k}{\omega} u_{-,1}^{(1)}$$

Dispersion relation vs. parameters $\beta = n_{+,0}/n_{-,0}$, and $\sigma = T_+/T_-$

[from: Esfandyari, Kourakis, Mehdipoor & Shukla, sub JPA: Math. Phys. (2006)].

Second-order solution ($\sim \epsilon^2$)

From m = 2, l = 1, we obtain the relation:

$$\frac{\partial \psi}{\partial T_1} + v_g \frac{\partial \psi}{\partial X_1} = 0 \tag{2}$$

where

- $-\psi = \phi_1^{(1)}$ is the potential correction ($\sim \epsilon^1$);
- $-v_g = \frac{\partial \omega(k)}{\partial k_x}$ is the group velocity along \hat{x} ;
- the wave's envelope satisfies: $\psi = \psi(\epsilon(x v_g t)) \equiv \psi(\zeta)$.

 \Box The solution, up to $\sim \epsilon^2$, is of the form:

 $\phi \approx \epsilon \psi \cos \theta + \epsilon^2 \left[\phi_0^{(2)} + \phi_1^{(2)} \cos \theta + \phi_2^{(2)} \cos 2\theta \right] + \mathcal{O}(\epsilon^3) \,,$

(+ similar expressions for $n_{+/-}$ and $\mathbf{u}_{+/-}$) \rightarrow *Harmonic generation!*.

Third-order solution ($\sim \epsilon^3$)

 \Box Compatibility equation (from m = 3, l = 1), in the form of:

$$\frac{\partial \psi}{\partial \tau} + P \frac{\partial^2 \psi}{\partial \zeta^2} + Q |\psi|^2 \psi = 0$$

i.e. a Nonlinear Schrödinger-type Equation (NLSE) .

 \Box Variables: $\zeta = \epsilon(x - v_g t)$ and $\tau = \epsilon^2 t$;

Dispersion coefficient *P*:

$$P = \frac{1}{2} \frac{\partial^2 \omega}{\partial k_x^2} = \frac{1}{2} \left[\omega''(k) \cos^2 \alpha + \omega'(k) \frac{\sin^2 \alpha}{k} \right];$$
(3)

□ Nonlinearity coefficient Q: ... → (omitted) = A (lengthy!) function of k, angle α and plasma parameters. www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

NLSE Story 1: Modulational (in)stability analysis

The NLSE admits the *harmonic wave solution*:

$$\psi = \hat{\psi} e^{iQ|\hat{\psi}|^2\tau} + \text{c.c}$$

 \Box *Perturb* the amplitude by setting: $\hat{\psi} = \hat{\psi}_0 + \epsilon \hat{\psi}_{1,0} \cos{(\tilde{k}\zeta - \tilde{\omega}\tau)}$

□ We obtain the *(perturbation)* dispersion relation:

$$\tilde{\omega}^2 = P^2 \,\tilde{k}^2 \left(\tilde{k}^2 - 2\frac{Q}{P} |\hat{\psi}_{1,0}|^2 \right). \tag{4}$$

□ If PQ < 0: the amplitude ψ is *stable* to external perturbations;

 \Box If PQ > 0: the amplitude ψ is *unstable* for $\tilde{k} < \sqrt{2\frac{Q}{P}}|\psi_{1,0}|$.

NLSE Story 2: Localized envelope excitations (envelope solitons)

□ The NLSE:

$$i\frac{\partial\psi}{\partial\tau} + P\frac{\partial^2\psi}{\partial\zeta^2} + Q\,|\psi|^2\,\psi = 0$$

accepts various solutions in the form: $\psi = \rho e^{i\Theta}$; the *total* electric potential is then: $\phi \approx \epsilon \rho \cos(\mathbf{kr} - \omega t + \Theta)$ where the amplitude ρ and phase correction Θ depend on ζ, τ .

 $\Box If PQ > 0: Bright solitons (envelope pulses);$

□ If PQ < 0: *Dark (black/grey)* solitons (envelope holes).

Localized envelope excitations (solitons) for PQ > 0

- □ The NLSE accepts various solutions in the form: $\psi = \rho e^{i\Theta}$; the *total* electric potential is then: $\phi \approx \epsilon \rho \cos(\mathbf{kr} - \omega t + \Theta)$ where the amplitude ρ and phase correction Θ depend on ζ, τ .
- Bright-type envelope soliton (pulse):

$$\rho = \rho_0 \operatorname{sech}\left(\frac{\zeta - v \tau}{L}\right), \qquad \Theta = \frac{1}{2P} \left[v \zeta - (\Omega + \frac{1}{2}v^2)\tau \right]. \tag{5}$$

Propagation of a bright envelope soliton (pulse)

Propagation of a bright envelope soliton (pulse)

Cf. electrostatic plasma wave data from satellite observations:

(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)])

Propagation of a bright envelope soliton (continued...)

Localized envelope excitations for PQ < 0

□ Dark-type envelope solution (*hole soliton*):

$$\rho = \pm \rho_1 \left[1 - \operatorname{sech}^2 \left(\frac{\zeta - v\tau}{L'} \right) \right]^{1/2} = \pm \rho_1 \tanh \left(\frac{\zeta - v\tau}{L'} \right),$$

$$\Theta = \frac{1}{2P} \left[v \zeta - \left(\frac{1}{2} v^2 - 2PQ\rho_1^2 \right) \tau \right]$$

$$L' = \sqrt{2} \left| \frac{P}{Q} \right| \frac{1}{\rho_1}$$
This is a propagating localized hole (zero density void):

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

-1-

This is a

void:

propagating

(finite-density)

Localized envelope excitations for PQ < 0

Grey-type envelope solution (*void soliton*):

Stability profile (ESW): P/Q ratio versus reduced wavenumber $k\lambda_{D,-}$

- Lower (acoustic) mode:

- Upper (optic-type) mode:

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf

Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

 $\frac{1}{k}$

Stability profile (ESW): P/Q ratio versus reduced wavenumber $k\lambda_{D,-}$

- Lower (acoustic) mode:

- Upper (optic-type) mode:

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf

Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

Part B: Two-fluid model for *oblique* EM waves in p.p. or e-p-i plasma *Fluid Eqs.* (for $j = 1^+, 2^-$):

$$(q_1 = -q_2 = +Ze)$$

$$(m_1 = m_2 = m)$$

$$\frac{\partial n_j}{\partial t} + \nabla \cdot (n_j \mathbf{u}_j) = 0$$

$$\frac{\partial \mathbf{u}_j}{\partial t} + \mathbf{u}_j \cdot \nabla \mathbf{u}_j = \frac{q_j}{m_j} \left(\mathbf{E} + \frac{1}{c} \mathbf{u}_j \times \mathbf{B} \right)$$

Maxwell's laws:

 $\frac{1}{c}$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \qquad \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \frac{4\pi}{c} \sum_{j} n_{j} q_{j}, \qquad \nabla \cdot \mathbf{B} = 0$$

+ a convenient frame:

 $\mathbf{k} = (k, 0, 0)$

First-order ($\sim \epsilon^1$): linear dynamics

□ Dispersion relation: $D(\omega, k; \theta) = d_0(\omega, k) + d_1(\omega, k) \sin^2 \theta = 0$

$$\begin{aligned} d_{0}(\omega,k) &\equiv D(\omega,k;\theta=0) \\ &= (\omega^{2} - \omega_{p,eff}^{2}) \\ &\times \left\{ \left[(\omega^{2} - c^{2}k^{2})(\omega^{2} - \Omega^{2}) - \omega^{2}\omega_{p,eff}^{2} \right]^{2} - \omega^{2}\Omega^{2}(\omega_{p,1}^{2} - \omega_{p,2}^{2})^{2} \right\} \\ &= (\omega^{2} - \omega_{p,eff}^{2}) \\ &\times \left\{ (\omega+\Omega) \left[-(\omega^{2} - c^{2}k^{2})(\omega-\Omega) + \omega\omega_{p,1}^{2} \right] + \omega(\omega-\Omega)\omega_{p,2}^{2} \right\} \\ &\times \left\{ (\omega-\Omega) \left[-(\omega^{2} - c^{2}k^{2})(\omega+\Omega) + \omega\omega_{p,1}^{2} \right] + \omega(\omega+\Omega)\omega_{p,2}^{2} \right\}, \end{aligned}$$

 $d_1(\omega,k;\theta) = -c^2 k^2 \Omega^2 \left\{ c^2 k^2 \omega_{p,eff}^2(\omega^2 - \Omega^2) + \omega^2 [4\omega_{p,1}^2 \omega_{p,2}^2 - (\omega^2 - \Omega^2) \omega_{p,eff}^2] \right\},$

Notation: $\omega_{p,eff}^2 = \omega_{p,1}^2 + \omega_{p,2}^2$; Ω is the (common) cyclotron frequency. www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

First-order solution ($\sim \epsilon^1$)

$$\begin{aligned} n_{j}^{(11)} &= n_{j,0} \frac{k}{\omega} u_{j,x}^{(11)} = c_{j,n,y}^{(11)} B'_{y} + c_{j,n,z}^{(11)} B'_{z}, \\ u_{j,i}^{(11)} &= c_{j,i,y}^{(11)} B'_{y} + c_{j,i,z}^{(11)} B'_{z}. \\ E_{i}^{(11)} &= c_{el,i,y}^{(11)} B'_{y} + c_{el,i,z}^{(11)} B'_{z} \qquad \text{(for } j = 1, 2 \text{ and } i = x, y, z) \\ B_{x}^{(nl)} &= \text{cst}. \end{aligned}$$

where

$$c_{j,x,y}^{(11)} = i(-1)^{j+1} \frac{\omega^2 \Omega^3 \sin \theta \cos \theta}{k \left[\omega^2 (\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2 \omega_{p,eff}^2 \cos^2 \theta\right]}$$

$$c_{j,x,z}^{(11)} = \frac{\Omega^2 \sin \theta}{k \left(\omega^2 - \Omega^2\right) \left[\omega^2 (\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2 \omega_{p,eff}^2 \cos^2 \theta\right]} \times$$

$$\left\{ -\omega^3 (\omega^2 - \Omega^2 - \omega_{p,eff}^2) + i\Omega \omega_{p,eff}^2 \cos \theta \left[(-1)^{j+1} \omega^2 + \Omega \cos \theta (i\omega + (-1)^j \Omega \cos \theta) \right] \right\}$$

 $(j, j' = 1, 2 \text{ and } j' \neq j)$ (continued \rightarrow) www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006 (

First-order solution ($\sim \epsilon^1$) (continued)

$$e_{j,y,y}^{(11)} = \frac{\omega\Omega^2(\omega^2 - \omega_{p,eff}^2)\cos\theta}{k\left[\omega^2(\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2\omega_{p,eff}^2\cos^2\theta\right]}$$

$$c_{j,y,z}^{(11)} = \frac{\Omega\omega}{k\left(\omega^2 - \Omega^2\right)} \left[i(-1)^{j+1}\omega + \frac{\Omega^3\omega_{p,eff}^2\cos\theta\sin^2\theta}{\omega^2(\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2\omega_{p,eff}^2\cos^2\theta} \right]$$

$$c_{j,z,y}^{(11)} = i (-1)^{j} \frac{\omega^{2} \Omega(\omega^{2} - \omega_{p,eff}^{2} - \Omega^{2} \sin^{2} \theta)}{k [\omega^{2}(\omega^{2} - \Omega^{2} - \omega_{p,eff}^{2}) + \Omega^{2} \omega_{p,eff}^{2} \cos^{2} \theta]}$$

$$c_{j,z,z}^{(11)} = \frac{\Omega^2 \left\{ \omega^3 (\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2 \omega_{p,eff}^2 \cos \theta (\omega \cos \theta + i(-1)^j \Omega \sin^2 \theta) \right\} \cos \theta}{k \left(\omega^2 - \Omega^2 \right) \left[\omega^2 (\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2 \omega_{p,eff}^2 \cos^2 \theta \right]}$$

$$c_{el,x,y}^{(11)} = c_{el,x,z}^{(11)} = \frac{\omega \Omega^2 \omega_{p,eff}^2 \sin \theta \cos \theta}{ck[\omega^2(\omega^2 - \Omega^2 - \omega_{p,eff}^2) + \Omega^2 \omega_{p,eff}^2 \cos^2 \theta]}$$

$$c_{el,y,y}^{(11)} = c_{el,z,z}^{(11)} = 0$$

$$c_{el,y,z}^{(11)} = -c_{el,z,y}^{(11)} = \frac{\omega}{ck}.$$

 $\|$ – Dispersion relation: $f = \omega/\Omega$ vs. $\kappa = ck/\Omega$ & effect of $n_{+,0} \neq n_{-,0}$

$$D_{\parallel}(\omega,k) = (\omega^2 - c^2 k^2)(\omega^2 - \Omega^2) - \omega^2 \omega_{p,eff}^2 \pm \omega \Omega(\omega_{p,1}^2 - \omega_{p,2}^2) = 0$$
$$D_{\parallel,p.p.}(\omega,k) = (\omega^2 - c^2 k^2)(\omega^2 - \Omega^2) - 4\omega^2 \omega_p^2 = 0$$

Here $\eta = (n_{+,0} - n_{-,0})/(n_{+,0} + n_{-,0}) = 0.5$, $h = \omega_{p,eff}^2/\Omega^2 = 0.1$. [from: Cramer, ICPP 2006]; Kourakis, Verheest & Cramer, in preparation.

Second-order solution ($\sim \epsilon^2$)

 \Box From m = 2, l = 1, we obtain a compatibility condition in the form:

$$\frac{\partial \tilde{B}_{\perp}}{\partial T_1} + v_g \frac{\partial \tilde{B}_{\perp}}{\partial X_1} = 0$$

 $-\tilde{B}_{\perp} = B_z^{(11)} + CB_y^{(11)}$ is the magnetic field (envelope) correction; $-v_g = \frac{d\omega(k)}{dk} = -\frac{\partial D/\partial k}{\partial D/\partial \omega}$ is the group velocity;

- the magnetic field correction (amplitude) satisfies:

 $B_{y/z} = B_{y/z}(X_1 - v_g T_1) \equiv B_{y/z}(\zeta).$

-C is a (complex) phase shift factor; $C \rightarrow \pm i$ for $\theta \rightarrow 0$.

(8)

(Coupled) Nonlinear Schrödinger equation(s) for the amplitudes $B_{y,z}^{(11)}$ e.g. for $\theta = 0$: $i \frac{\partial \tilde{B}_{\perp}}{\partial \tau} + \beta \frac{\partial^2 \tilde{B}_{\perp}}{\partial \zeta^2} + \alpha |\tilde{B}_{\perp}|^2 \tilde{B}_{\perp} = 0$.

Influence of the 3rd species on EM wave stability:

[from: Cramer, ICPP 2006]; Kourakis, Verheest & Cramer, in preparation.

I. Kourakis, Modulated Envelope Wavepackets in pair plasmas

www.tp4.rub.de/~ioannis/conf/200608-ICTP-oral.pdf Int. Workshop on Frontiers of Plasma Science, ICTP, Aug. 2006

Conclusions (1/2)

- Amplitude Modulation (due to carrier self-interaction) is a generic manifestation of nonlinearity on oscillatory mode dynamics.
- Modulated ES and EM waves may undergo spontaneous modulational instability; this may drive nonlinear evolution towards ...
- ... energy localization, via the formation of envelope localized structures (envelope solitons);
- Modulated (ES, mostly) plasma wave packets observed in Space and in the lab, may be efficiently modelled this way.
- NLS solitons bear specific "signature" (features like e.g. amplitude-width relation) which allow for a verification of the theory via observations.

(cont.) \rightarrow

Conclusions (cont.)

- □ Among ES modes in pair plasmas, (i) the (Langmuir-like) upper mode is modulationally unstable (\rightarrow *bright* envelope solitons), (ii) the acoustic branch is stable (\rightarrow envelope *holes*), yet heavily damped (for $T_+ = T_-$).
- EM modes in p.p. are modified if a third, massive species is present; e.g., parallel p.p. modes (1 acoustic + 1 upper O-mode, both modulationally unstable for low k) split into four distinct modes, featuring 3 new frequency gaps; two of these are stabilized, due to the 3rd species.
- Future extensions of the theory : relativistic effects, 2D geometry, more exotic localized envelope solutions (*dromions*?), ...
- □ Inherent drawback of a fluid theory: Landau damping overseen, → to be considered a posteriori.

Thank You !

Acknowledgements:

Frank Verheest, Tom Cattaert (U. Gent, Belgium) Neil Cramer (U. Sydney, Australia) Padma Kant Shukla and co-workers (RUB, Germany) Rasoul Esfandyari-Kalejahi and co-workers (Tabriz, Iran)

Material from:

- I. Kourakis, F. Verheest and N. Cramer, in preparation (2006);
- I. Kourakis, A. Esfandyari-Kalejahi, M. Mehdipoor and P.K. Shukla, Phys. Plasmas, 13 (5), 052117/1-9 (2006);
- A. Esfandyari-Kalejahi, I. Kourakis, M. Mehdipoor and P.K. Shukla, J. Phys. A: Math. Gen., submitted (2006).

Slides available at: www.tp4.rub.de/~ioannis

Ioannis.Kourakis@Ugent.be , ioannis@tp4.rub.de