1. Introduction

A number of recent theoretical studies have been devoted to col-
lective processes in strongly coupled dusty plasmas (DP), moti-
vated by recent experiments. Dust (quasi-)lattices (DL) are typi-
cally formed in the sheath region above the negative electrode in
discharge experiments, horizontally suspended at a levitated equi-
librium position, at z = zj, where gravity and electric (and/or
magnetic) forces balance. The linear regime of low-frequency os-
cillations in DP crystals, in the longitudinal (acoustic mode) and
transverse (in-plane, shear acoustic mode and vertical, off-plane op-
tical mode) direction(s), is now quite well understood. However,
the nonlinear (NL) behaviour of DP crystals is little explored, and
has lately attracted experimental [1-3] and theoretical [1-8] inter-
est. Similar nonlinear studies are being carried out in ultra-cold
plasmas (UCPs), i.e. strongly-coupled micro-plasma configuration
formed in magnetic traps |9].

Recently, we considered the coupling among the horizontal (~ )
and vertical (off-plane, ~ 2) degrees of freedom in dust mono-layers;

a set of NL equations for longitudinal and transverse dust lattice
waves (LDLWs, TDLWs) was thus rigorously derived [1].

Here, we review the notfnlinear dust grain excitations which may
occur in a DP crystal (assumed quasi-one-dimensional and infinite,
composed from identical grains, of equilibrium charge ¢ and mass
M, located at xp, = nrg, n € N). lon-wake and ion-neutral
interactions (collisions) are omitted, for simplicity.

2. Transverse envelope structures (continuum)

Taking into account the intrinsic nonlinearity of the sheath elec-
tric (and/or magnetic) potential, the vertical (off-plane) n—th
grain displacement 0z, = 2z, — 29 in a dust crystal (where
n=..—10,1,2 ..), obeys the equation

d?6z, d(dzp)
a2 VT

+ WCQF,O (0zpa1+ 0zp—1 —202p) + wg 02,

ta(6zn)° 4+ B3 (62,)° = 0. (1)

(where coupling anharmonicity and second+ neighbor interactions
are omitted)
The characteristic frequency

wro = [~qU'(ro)/(Mrrg)] /2

is related to the (electrostatic) interaction potential; for a Debye-
Hiickel potential: Up(r) = (q/r)e~"/AD, one has

w(%,D — whr exp(—k) (1 + k) /K’
wpr, = [¢*)(M )\%)]1/ 2 is the characteristic dust-lattice frequency;
Ap 1s the Debye length;
Kk = 10/Ap is the DP lattice parameter. U(r).
The gap frequency wgy and the nonlinearity coefficients a, 3 are de-
fined via the potential ®(z) ~ &(zg) + M[w§5z%/2 +a(82,)3/3+
B (62p)*/4] + O[(62,)°] (expanded near zg, in account of the elec-
tric and/or magnetic field inhomogeneity and charge variations),
which is related to the overall vertical force

F(z)=F,;, (2)—Mg=—0d(z)/0z

el /m
recall that F(zg) = 0].
Linear excitations, viz. dzp ~ cos ¢y, (here ¢, = nkrg— wt; k and
w are the wavenumber and frequency; damping is neglected) obey
the optic-like discrete dispersion relation

2 2 2 .2 2
w” =wy — 4wy sin (kro/2) = wr. (2)
We see that transverse vibrations propagate as a backward wave
see that vy = wip(k) < 0], in fact regardless of the for any
form of U(r) : the group velocity vy = w'(k) and the phase speed
vpp, = w/k have opposite directions (this is in agreement with
recent experiments [2].

Notice the gap frequency wgy, as well as the lower cutoft wp 5, =
(w2 — 4“’% 0)1/2 (at the edge of the Brillouin zone, at k = mw/rq),

g
which is absent in the continuum limit, viz. w? 3

(for k < 7“0_1).
Assuming a weakly nonlinear continuum amplitude, one obtains,
via a multiple scale technique [5]:

~ 2122
~A0 wokro

Ozn ~ € (AP +cc) + € [wéZ) + (wéQ) e2iPn 4 c.c.)] + ...

where w(<)2> ~ A% wg) ~ A?: the amplitude A obeys the nonlin-

ear Schrodinger equation (NLSE):

0A 0% A )
Z@T+Pﬁ+Q’A‘ A=0, (3)

where {X, T} are the slow variables {e(x — vgt), €*t}.
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The dispersion coefficient Pp = w/l.(k) /2 takes negative (positive)
values for low (high) k.

The nonlinearity coefficient Q) = [10042/(3w§) —3 3] /2w is pos-
itive for all known experimental values of a, 3 [3].

For small wavenumbers k (where PQ < 0), TDLWs will be mod-
ulationally stable, and may propagate in the form of dark/grey
envelope excitations (hole solitons or voids |°].

For larger k, modulational instability may lead to the formation
of bright (pulse) envelope solitons.

Exact expressions for these excitations can be found in [5].

!.J |

“do[ 111444 bb UVVU bb 4 EC ol {114 b b UU bh 4 O
_¥.5l KL U

SRR TR TR TR
Fig. Envelope solitons of the (a, b) bright type; (¢, d) dark (black/grey) type.

3. Intrinsic transverse Localized Modes (ILMs) — Dis-
crete Breathers (DBs)

[LMs, i.e. highly localized Discrete Breather (DB) and multi-
breather-type few-site vibrations, were also shown to occur in trans-
verse DL motion [0, 7], from first principles. These excitations have
recently received increased interest among researchers in solid state
physics, due to their omnipresence in periodic lattices and remark-
able physical properties [3]. The existence of such DB structures at
a frequency wpp) generally requires the non-resonance condition

nwpp # w(k) Vn e N

which 4s, remarkably, satisfied in all known TDLW experiments |2].

Fig. Discrete Breathers of even and odd parity:.

4. Longitudinal envelope excitations

The nonlinear equation of motion

d?(6xp) = d(0xp)
dt? dt
—a9 [(5$n+1 — 5$n)2 — (0 — 5$n_1)2}

t+azy [(6zpg1 — 62n)° = (02 — 0xp—1)’] . (4)

= W(Q),L (0xp11 + 0xy_1 — 20n)

where the characteristic frequency is given by

wi g, = [U"(rg)/M)] = 2wy, exp(—k) (1 + & + £7/2) /K>

for Debye interactions,
describes the longitudinal dust grain displacements 0x,, = x,—nry.
The resulting acoustic linear mode* obeys

W = 4w% 0 sin’ (kro/2) = w%.

One now obtains (to lowest order ~ €)

dxy &€ [uéD +- (u<11> e'Pn 4 c.c.)] + €2 (ug2> e ) + ...,

(1)

where Uy obey [10)]
_8u§1) 82u§1> ()2 (1) pok? (1>8uél)
1
KT~ T - X

Here v, 1, = w} (k), and {X, T} are slow variables (as above).
We have defined:

= —TS’U”’(TO)/M = 2a20r8, qo = U””(To)ré/(ZM) = Baggfré

(both positive, and similar in magnitude for Debye interactions
1, 11]); recall that U is the interaction potential.
Eqgs. (5), (6) can be combined into an NLSE in the form of Eq.

(3), for A = ug) here, with P = Py = w7 (k)/2 < 0.
The exact form of ) > 0 (< 0) [10] prescribes stability (instability)
at low (high) k.
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Longitudinal envelope excitations are asymmetric: rarefactive
bright or compressive dark envelope structures.
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Fig. (a) Bright type; (b) dark type asymmetric envelope solitons.

5. Longitudinal solitons

Equation (4) is essentially the equation of atomic motion in a chain
with anharmonic springs, i.e. in the celebrated FPU (Fermi-
Pasta-Ulam) problem. At a first step, one may adopt a continuum
description, viz. dxpn(t) — wu(x,t). This leads to different nonlin-
ear evolution equations (depending on the simplifying hypotheses
adopted), some of which are critically discussed in [11]. What fol-
lows is a summary of the lengthy analysis therein.

Keeping lowest order nonlinear and dispersive terms, u(x,t) obeys

. . 9 CQL 9 2
u + Vu—cLum—Eroumm = —pouy Uzr + qo (Uz)” Ugy

(7)
where (+)z = 0(+)/0z; cf, = wy oTo; po and gy were defined above.
Assuming near-sonic propagation (i.e. v & ¢y ), and defining the
relative displacement w = u,, one has

wr — awwe + &w2w<+ bweee = 0 (8)

(for v = 0), where

a=po/(2cp) >0, a=qy/(2cr) >0, and b = cpri/24 > 0.
Following Melandsg [12], various studies have relied on the Ko-
rteweg - deVries (KAV) equation, i.e. Eq. (8) for a = 0, to
gain analytical insight in the compressitve structures observed in
experiments |1]. Indeed, the KAV Eq. possesses negative (only,
here, since a > 0) supersonic pulse soliton solutions for w, im-
plying a compressive (anti-kink) excitation for u; the KdV soli-
ton is thus interpreted as a density variation in the crystal, viz.
n(x,t)/ng ~ —0u/0xr = —w. Also, the pulse width Ly and height
uq satisty uoL% = cst., a feature which is confirmed by experiments
[1]. However, a ~ 2a in real Debye crystals (for k / 1), which in-
validates the KdV approximation a = 0 [I1]). Instead, one may
employ the extended KdV Eq. (eKdV) (8), which accounts for both
compressive and rarefactive lattice excitations (exact expressions
in [11]). Alternatively, Eq. (7) can be reduced to a Generalized
Boussinesq (GBq) Equation [11]; again, for gy ~ a =~ 0, one re-
covers a Boussinesq (Bq) equation, widely studied in solid chains.
The GBq (Bq) equation yields, like its eKdV (KdV) counterpart,
both compressive and rarefactive (only compressive, respectively)
solutions; however, the (supersonic) propagation speed v now does
not have to be close to c¢y. The lengthy analysis (see in [I1] for
details) is not reproduced here.

FdV va. Boussineaq, M = 1.1 FdvV va. Boudslneaq, M = 1.35
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Fig. KdV vs. Boussinesq (displacement) solitons, varying Mach no. M = v/cy.

5. Longitudinal Discrete Breathers

Following existing studies on Discrete Breathers (ILMs) in FPU
chains |cf. (4) abovel, it is straightforward to show the existence of
such localized excitations in the longitudinal direction. A detailed
investigation, in terms of real experimental parameters, is on the
way and will be reported soon.
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