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I. Introduction

Recent theoretical and experimental investigations of dust-contaminated plasmas (dusty plasmas, DP) 

[1]  have established the existence of strongly coupled DP lattices (crystals). These crystalline 

configurations, consisting of highly charged massive dust grains, are typically formed in the sheath 

region above a horizontal negatively biased electrode in gas discharge experiments (e.g. [1, 2]). 

Typical low-frequency oscillations are known to occur [1, 2] in these mesoscopic dust grain quasi-

lattices in the longitudinal (in-plane, acoustic mode), horizontal transverse (in-plane) and vertical 

transverse (off-plane, inverse dispersive optic-like mode) directions. A variety of 2D and 3D 

configurations are possible [1b], although the spontaneous occurrence of successive hexagonal 2D 

layers seems to be the most often encountered possibility. A 1D DP crystal has also been realized 

experimentally, by using appropriate substrate potentials. Such 1D lattices have been shown to host 

collective excitations, in the form of solitons, localized envelope wavepackets, as well as discrete 

breather-type excitations (see [8] and Refs. therein).  

In the present work a hexagonal DP lattice in considered. Transverse motion in this system is 

described by a Klein-Gordon-like Hamiltonian in the presence of an asymmetric quartic potential. By 

adopting real values for the potential (nonlinearity) parameters, as provided by experiments [4, 5, 6], 

and using the results of [6, 7], we shall prove that 2D DP crystals may support single-site as well as 

multi-site localised oscillations (multibreathers) [9]. 

where δzij=zij(t)-z0 denotes the small displacement of the ij−th grain around the (levitated) equilibrium 

position z0, in the transverse (z−) direction. The characteristic frequency  results from the dust grain 

(electrostatic) interaction potential Φ(r), e.g. for a Debye-Hückel potential, one has                                         

where λD denotes the effective DP Debye radius. The damping 

coefficient ν accounts for dissipation due to collisions between dust grains and neutral atoms. The gap 

frequency ω
g
and the nonlinearity coefficients α, β are defined via the overall vertical force: F(z) = F

e/m 
−

Mg > −M[ω
g
2(δz)+α(δz)2+ (δz)3]+O[(δz)4], which has been expanded around z

0
by formally taking into 

account the (anharmonicity of the) local form of the sheath electric and/or magnetic field(s), as well as, 

possibly, grain charge variation due to charging processes [10]. Recall that the electric/magnetic 

levitating force(s) F
e/m

balance(s) gravity at z
0
. Notice the difference in structure from the usual 

nonlinear Klein-Gordon equation used to describe one-dimensional oscillator chains, TDLWs 

(‘phonons’ ) in this chain are stable only in the presence of the field force F
e/m
.

For convenience, we may re-scale the time and vertical displacement variables over appropriate 

quantities, i.e. the characteristic (single grain) oscillation period ω
g
-1 and the lattice constant r

0
, 

respectively, viz. t = ω
g
-1 and δz

ij
= r

0
q
ij
Eq. (1) is thus expressed as:

The experiment on anharmonic single grain oscillations by Ivlev et al. [3], carried out in Garching

(Germany),provides α΄ > -0.5 and β΄ > 0.07 (for a lattice spacing, typically, of the order of r0=1mm).

Note that the damping coefficient ν was as low as ν/2π > 0.067 sec−1, so that (with ωg/2π > 17 sec−1)

one has: ν΄ = ν/ωg > 0.00 (the pressure in that experiment was kept as low as 0.5 Pa ).

Zafiu et al. [4], (Kiel, Germany) provides various possible values for the anharmonicity parameters, 

via successive experiments: α‘> +0.02/+0.016/−0.27 and β‘> −0.16/−0.17/−0.03. Again, we consider 

lattice spacing of the order of r
0
=1mm, damping  very low (ν' =0.02).

The results of the experiment on linear TDLWs by Misawa et al. [6] allows for a rough estimation of 

the coupling strength ω
g
> 155 sec−1 and ω

0
> 19.5 sec−1, which give ε > 0.016. Note that the 

effective damping term was kept as low as  ν > 0.239 sec−1, i.e. ν'= ν/ ω
g 
> 0.00154.

II. Equation of motion
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where the (dimensionless) damping term, now expressed as        , will be henceforth 

omitted in the left-hand side. The coupling parameter is now , and the nonlinearity coefficients are now:    

and 
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III. Existence of Multibreathers in Dusty Plasma Crystals

The above system can be produced by a Hamiltonian of the form
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Fig.1: In a 2D dusty plasma crystal the 

lattice is self-organised in a hexagonal 

lattice. 
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The theoretical prediction of the existence of multi-site breathers in hexagonal DP crystals follows 

closely the generic proof suggested in [6]. Apart from single-site breathers, three distinct types of 

multibreathers were found, depending on the phase difference, between the oscillators. We define 

1 2 1 2 3 1,φ ϑ ϑ φ ϑ ϑ= − = − and consequently
3 3 1 2 1.φ ϑ ϑ φ φ= − = − The key point is to show that these

Single-site breathers

1 2 0φ φ= =

0
J

ω
ε
∂

>
∂

stable and remains this way until these multipliers reache the linear (phonon) spectrum. We can achieve 

this for ε=0.016 for the two sets of parameters of [4] and the set of [3]. Note that the eigenvalues which 

correspond to the central oscillators are double but they don’t leave the unit circle due to symplectic 

signature reasons.
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Fig.6: ω(J) of the system proposed in [4].

structures remain stable up to ε = 0.016, which is the experimental value for the coupling.

Fig2. Two snapshots of a single site breather and the corresponding Floquet multipliers

The case of the single breathers is quite simple, since we only have to avoid the phonon band as it can 

be shown by fig.2. We can acquire linearly stable breathers up to ε=0.016 for all the choices of 

nonlinearity  parameters.

Multi-site breathers

Fig.3: An in-phase 3-site breather nad the corresponding Floquet multipluiers.

The multipliers of the central oscillators move along the unit circle since so the breather is linearly

Fig.4: The anti-phase 3-site breather destabilises even for ε=0.001

One pair of multipliers corresponding to the central oscilltors, leave the unit circle for ε>0 in the case of 

the anti-phase 3-site breather, as it is shown in [6].

Fig.5: In the case of the vortex breather the 

multipliers of the central oscillators move both 

along the real axis causing this way a strong 

instability.

Note that the system proposed in [4] has a graph of ω(J) which 

is shown in fig.6. If we consider initial conditions further than 

the turning point of the graph, the stability is reversed, so we

can acquire vortex breathers.

IV. Conclusions – Future Work

We have shown that a two-dimensional hexagonal dusty plasma crystal can support single-site 

breathers, and in-phase 3-site breathers, while the rest of the theoretically predicted are highly 

unstable. An intriguing result refers to the system of [4]. In this system for high amplitudes of 

oscillation the expected 3-site breathers are are essentially vortex breathers. These results will 

hopefully be confirmed by appropriate experiments. 

The vertical grain displacement obeys an 

equation in the form 

In-phase breathers :

Out of phase breathers :

Vortex breathers :

In this case, the resulting breathers are vortex breathers. In the first case the breather is moving anti-

clockwise (in the fig. below: a-b-c-d) while in the second case the breather is moving clockwise (a-d-c-b)


