1 Nonlinear field-line wandering

An 1mproved nonlinear formulation for field-line random walk
in magnetostatic turbulence has been developed in (Shalchi &
Kourakis, 2007). This approach is a direct generalization of the
diffusion theory proposed earlier by Matthaeus et al. (1995).
For a diffusive behaviour of field-lines, the theories coincide.
However, the new theory can also be applied in non-diffusive
transport cases.

For the purpose of modelling field-line random walk, the turbu-

lence model adopted has to be specified in terms of the mag-

netic correlation tensor PZ-]-(E) = <5BZ(E)5B;<(/Z)> Accord-
ing to Bieber et al. (1994), the so-called slab/2D composite
model 1s a realistic model for solar wind turbulence. Within
the two-component model the correlation tensor has the form:
Pou(R) = PEoH(R) + P22 (R) with P(R) = g (k)3 (k) /K.
and P2P(k) = g*"(k1)0(k))k;/k7. For the two wave spectra
g*'"(k)) and ¢g*”(k, ), we employ the standard form (see Bieber
et al. 1994)
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where we have defined the constant C'(v) = ['(v)/(2y/7]'(v —
1/2)), the slab- and 2D bendover scales Iy, and [op, the
strength of the turbulent fields 0 By;,;, and 0 By p, and the inertial-
range spectral index 2v.

It can easily be demonstrated that, for pure slab geometry, mag-
netic field-line wandering behaves diffusively:
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for large |z|. A number of previous papers (e. g. Matthaeus et
al. 1995) have relied on the ad hoc assumption that Eq. (2) 1s
also valid in two-component turbulence. However, a rigorous
formulation of field-line random walk leads to
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(Shalchi & Kourakis 2007). The only assumptions which have

been applied to derive this result are Corrsin’s independence
hypothesis (Corrsin 1959) and the assumption of a Gaussian
distribution of field-lines.
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2 Generalized compound-diffusion of

charged particles

By assuming that the particles (or, more precisely, their
guiding-centers) follow the magnetic field-lines (guiding center
approximation) we can formulate a relation between the per-

pendicular MSD of the charged particle (<(Aaj(t))2>P) and the
MSD of the field-lines ({(Axz(2))’) )

+00

(aat)), = |

Here fp(z,t) denotes the particle distribution in the direction
parallel to the background field.
A standard assumption in cosmic ray transport theory 1s the as-
sumption of a Gaussian particle distribution
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Using Eq. (3) for the field-line MSD 1n combination with Eq.
(5) for the particle distribution, we can evaluate Eq. (4) as
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A (time-dependent) diffusion coefficient, as obtained from test-
particle simulations, can be defined as r,.(t) = <(Ax)2> /(2t).

In general, one may adopt the assumption < (Az(t))”
th—I—l

with

> pr
, implying a parallel diffusion coefficient x.. ~ tI. As-
suming x,, ~ 1", it is straightforward to find from Eq. (6) the

relation

3
Theretore, knowledge of b (e.g., from simulation data) leads
to an evaluation of b, within this model. For instance if par-
allel transport behaves diffusively (b = 0) we find b, = —1/3
(subdiffusion). A diffusive behaviour of perpendicular transport

(b, = 0) can only be obtained for b =1 /2 (superdiffusion).

3 Test particle simulations

We have investigated test-particle dynamics for the following
set of parameters: lop = 0.10y4., ¥ = 5/6, and 20%/80%
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slab/2D composite geometry. In Fig. 1, we have depicted the ra-
tio of perpendicular and parallel diffusion coefficients x,, /..
as a function of the dimensionless time 7 = vt /Iy, for dimen-
sionless cosmic ray rigidity value R = Ry /I, = 0.001 .
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A small value of R has been chosen, to ensure that the guiding-
center approximation 1s valid. The results of the Generalized
Compound Diffusion (GCD) model are compared to those ob-
tained from the NLGC- and ENLGC-theories (see Matthaeus et
al. 2003, Shalchi 2006), and also to test-particle simulations.
By assuming the simple form #,.(t) = a7’ we can de-
duce the time dependence from numerical data, by using b =
(Infy(7)—Ina)/InT ~ (Ink,,(7))/ In 7 in the large time limit
(k. denotes the dimensionless diffusion coefficient obtained by
the stmulations).
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The exponents for the parallel b and perpendicular b, diffusion
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coefficients are depicted in Fig. 2 for different values of the pa-
rameter R (R = 0.001 (red), R = 0.01 (blue), R = 0.1 (green))
in comparison to the theoretical result (dots).

4 Comparison with solar wind observa-

tions

It 1s not a trivial task to compare our new (non-diffusive) re-
sult with solar wind observations. First, we replace the paral-
lel mean square deviation in Eq. (6) by a diffusive behavior
(< (Az(t))? >p~ 2kt) to get
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One thus obtains for the (time-dependent) perpendicular diffu-
sion coetficient
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To proceed, we average over the scattering time ¢, = /v to

get
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By using \; = 3k;/v, we find an analytical expression for the
perpendicular mean free path
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For v = 5/6 and 0 B3,/ B> = 0.8, as proposed by Bieber et al.
(1994) we obtain

AL =0.75 L A (13)

Palmer (1982) suggested that the parallel mean free path in the
solar wind is 0.08AU < Ay pumer < 0.3AU and the perpen-
dicular mean free path is A\ pyier =~ 0.007AU. By taking the
average value for the parallel mean free path A pyer &~ 0.2
and by applying Eq. (13) we find A\, ccp ~ 0.009AU (for
lop = 0.1l ~ 0.003AU) which is close to the measured value.
Obviously, there 1s a very good agreement between solar wind
observations and our theoretical approach.



