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1 Nonlinear field-line wandering
An improved nonlinear formulation for field-line random walk
in magnetostatic turbulence has been developed in (Shalchi &
Kourakis, 2007). This approach is a direct generalization of the
diffusion theory proposed earlier by Matthaeus et al. (1995).
For a diffusive behaviour of field-lines, the theories coincide.
However, the new theory can also be applied in non-diffusive
transport cases.
For the purpose of modelling field-line random walk, the turbu-
lence model adopted has to be specified in terms of the mag-
netic correlation tensor Pij(~k) =

〈
δBi(~k)δB∗

j (
~k)
〉

. Accord-
ing to Bieber et al. (1994), the so-called slab/2D composite
model is a realistic model for solar wind turbulence. Within
the two-component model the correlation tensor has the form:
Pxx(~k) = P slab

xx (~k) + P 2D
xx (~k) with P slab

xx (~k) = gslab(k‖)δ(k⊥)/k⊥
and P 2D

xx (~k) = g2D(k⊥)δ(k‖)k
2
y/k

3
⊥. For the two wave spectra

gslab(k‖) and g2D(k⊥), we employ the standard form (see Bieber
et al. 1994)

gslab(k‖) =
C(ν)

2π
lslabδB

2
slab (1 + k2

‖l
2
slab)

−ν

g2D(k⊥) =
2C(ν)

π
l2DδB2

2D (1 + k2
⊥l22D)−ν (1)

where we have defined the constant C(ν) = Γ(ν)/(2
√

πΓ(ν −
1/2)), the slab- and 2D bendover scales lslab and l2D, the
strength of the turbulent fields δBslab and δB2D, and the inertial-
range spectral index 2ν.
It can easily be demonstrated that, for pure slab geometry, mag-
netic field-line wandering behaves diffusively:〈

(∆x(z))2
〉
|z|→∞

≈ 2κFL | z | , (2)

for large |z|. A number of previous papers (e. g. Matthaeus et
al. 1995) have relied on the ad hoc assumption that Eq. (2) is
also valid in two-component turbulence. However, a rigorous
formulation of field-line random walk leads to

〈
(∆x(z))2

〉
|z|→∞

=
(

9

√
π

2
C(ν)

)2/3
(

δB2D

B0

)4/3

l22D

(
| z |
l2D

)4/3

(3)

(Shalchi & Kourakis 2007). The only assumptions which have
been applied to derive this result are Corrsin’s independence
hypothesis (Corrsin 1959) and the assumption of a Gaussian
distribution of field-lines.

2 Generalized compound-diffusion of
charged particles

By assuming that the particles (or, more precisely, their
guiding-centers) follow the magnetic field-lines (guiding center
approximation) we can formulate a relation between the per-
pendicular MSD of the charged particle (

〈
(∆x(t))2

〉
P

) and the

MSD of the field-lines (
〈
(∆x(z))2

〉
FL

)

〈
(∆x(t))2

〉
P

=
∫ +∞

−∞
dz

〈
(∆x(z))2

〉
FL

fP (z, t) . (4)

Here fP (z, t) denotes the particle distribution in the direction
parallel to the background field.
A standard assumption in cosmic ray transport theory is the as-
sumption of a Gaussian particle distribution

fP (z, t) =
(
2π
〈
(∆z(t))2

〉
P

)−1/2
e
− z2

2〈(∆z(t))2〉P . (5)

Using Eq. (3) for the field-line MSD in combination with Eq.
(5) for the particle distribution, we can evaluate Eq. (4) as

〈
(∆x)2

〉
P

= α(ν)

(
δB2D

B0

)4/3 [
l2D

〈
(∆z(t))2

〉
P

]2/3
. (6)

with

α(ν) =
Γ(7/6)√

π

(
18

√
π

2
C(ν)

)2/3

. (7)

A (time-dependent) diffusion coefficient, as obtained from test-
particle simulations, can be defined as κxx(t) =

〈
(∆x)2

〉
/(2t).

In general, one may adopt the assumption < (∆z(t))2 >P∼
tb‖+1, implying a parallel diffusion coefficient κzz ∼ tb‖. As-
suming κxx ∼ tb⊥, it is straightforward to find from Eq. (6) the
relation

b⊥ =
2b‖ − 1

3
. (8)

Therefore, knowledge of b‖ (e.g., from simulation data) leads
to an evaluation of b⊥, within this model. For instance if par-
allel transport behaves diffusively (b‖ = 0) we find b⊥ = −1/3
(subdiffusion). A diffusive behaviour of perpendicular transport
(b⊥ = 0) can only be obtained for b‖ = 1/2 (superdiffusion).

3 Test particle simulations
We have investigated test-particle dynamics for the following
set of parameters: l2D = 0.1 lslab, ν = 5/6, and 20%/80%

slab/2D composite geometry. In Fig. 1, we have depicted the ra-
tio of perpendicular and parallel diffusion coefficients κxx/κzz

as a function of the dimensionless time τ = vt/lslab for dimen-
sionless cosmic ray rigidity value R = RL/lslab = 0.001 .

A small value of R has been chosen, to ensure that the guiding-
center approximation is valid. The results of the Generalized
Compound Diffusion (GCD) model are compared to those ob-
tained from the NLGC- and ENLGC-theories (see Matthaeus et
al. 2003, Shalchi 2006), and also to test-particle simulations.
By assuming the simple form κ̃xx(t) = aτ b we can de-
duce the time dependence from numerical data, by using b =
(ln κ̃xx(τ )− ln a)/ ln τ ≈ (ln κ̃xx(τ ))/ ln τ in the large time limit
(κ̃xx denotes the dimensionless diffusion coefficient obtained by
the simulations).

The exponents for the parallel b‖ and perpendicular b⊥ diffusion

coefficients are depicted in Fig. 2 for different values of the pa-
rameter R (R = 0.001 (red), R = 0.01 (blue), R = 0.1 (green))
in comparison to the theoretical result (dots).

4 Comparison with solar wind observa-
tions

It is not a trivial task to compare our new (non-diffusive) re-
sult with solar wind observations. First, we replace the paral-
lel mean square deviation in Eq. (6) by a diffusive behavior
(< (∆z(t))2 >P≈ 2κ‖t) to get

〈
(∆x)2

〉
P

= α(ν)

(
δB2D

B0

)4/3 (
2l2Dκ‖t

)2/3
. (9)

One thus obtains for the (time-dependent) perpendicular diffu-
sion coefficient

κ⊥(t) = 2−1/3α(ν)

(
δB2D

B0

)4/3 (
l2Dκ‖

)2/3
t−1/3 . (10)

To proceed, we average over the scattering time tc = λ‖/v to
get

κ⊥ =
3

24/3
α(ν)

(
δB2D

B0

)4/3 (
l2Dκ‖

)2/3
(

v

λ‖

)1/3

. (11)

By using λi = 3κi/v, we find an analytical expression for the
perpendicular mean free path

λ⊥ =
(

3

2

)4/3

α(ν)

(
δB2D

B0

)4/3

l
2/3
2Dλ

1/3
‖ . (12)

For ν = 5/6 and δB2
2D/B2

0 = 0.8, as proposed by Bieber et al.
(1994) we obtain

λ⊥ = 0.75 l
2/3
2D λ

1/3
‖ . (13)

Palmer (1982) suggested that the parallel mean free path in the
solar wind is 0.08AU ≤ λ‖,Palmer ≤ 0.3AU and the perpen-
dicular mean free path is λ⊥,Palmer ≈ 0.007AU . By taking the
average value for the parallel mean free path λ‖,Palmer ≈ 0.2
and by applying Eq. (13) we find λ⊥,GCD ≈ 0.009AU (for
l2D = 0.1lslab ≈ 0.003AU ) which is close to the measured value.
Obviously, there is a very good agreement between solar wind
observations and our theoretical approach.
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