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1. Introduction

Amplitude modulation (AM) (related to modulational instability,
MI) is a well-known mechanism of energy localization dominating
wave propagation in nonlinear dispersive media.
The purpose of this study is to provide a generic methodological
framework for the study of the nonlinear (self-)modulation of the
amplitude of electromagnetic modes, a mechanism known to be as-
sociated with harmonic generation and the formation of localized
envelope modulated wave packets , such as the ones abundantly
observed during laboratory experiments and satellite observations,
e.g. in the Earth’s magnetosphere:
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Figure 1. Satellite observations of modulation phenomena: (a) Cluster data,

from O. Santolik et al., J. Geophys. Res. 108, 1278 (2003); (b) FAST data,

from R. Pottelette et al., Geophys. Res. Lett. 26 (16) 2629 (1999); (c), (d)

from Ya. Alpert, Phys. Reports 339, 323 (2001).

2. A (2+1) component plasma fluid model

We consider a multi-component collisionless plasma embedded in a
uniform magnetic field B0. The plasma is composed of:
* (species 1) positive ions (mass m1, charge q1 = s1Z1e) and
* (species 2) negative ions, or electrons (mass m2 = m, charge
q2 = s2Z2e).
* (species 3) massive, immobile particles (e.g. dust, or ions in e-p-i
plasmas), charge q3 = s3Z3e (here s3 ± 1), mass m3 � m1/2.

* We have defined the charge state(s) Zj (j = 1, 2), the charge
sign sj = qj/|qj| = ±1 and the absolute electron charge e; we
shall denote the respective equilibrium number densities by nj,0.
* Application 1: Dusty e-i plasmas : q2 = −e (Z2 = 1, s2 = −1);
* Application 2: Pair- (or e-p-i) plasmas: Z1 = Z2, m1 = m2.
We consider the (two-) fluid density and momentum equations:

∂nj
∂t

+∇ · (nj uj) = 0 (1)

∂uj
∂t

+ uj · ∇uj =
qj
mj

(
E + uj ×B

)
, (2)

where nj and uj denote the density and the mean (fluid) velocity
of species j (= 1, 2). The (total) electric and magnetic fields, E
and B respectively, obey Maxwell’s laws:

∂B

∂t
= −∇× E , (3)

1

c2
∂E

∂t
= ∇×B− µ0

∑
j

njqjuj , (4)

The electric field E obeys Poisson’s equation

ε0∇ · E = e(Z1n1 − Z2n2 + s3n3Z3) (5)

while the magnetic field satisfies Gauss’ law

∇ ·B = 0 . (6)

The RHS of Poisson’s Eq. (5) cancels at equilibrium (only):

Z1n1,0 − Z2n2,0 + s3n3Z3 = 0 , (7)

We underline the fact that no a priori assumption is made on
the (conservation of) charge neutrality (or density balance) during
dynamical evolution in time (off equilibrium).
The system of Eqs. (1) - (4) form a closed system of scalar
evolution equations, for the elements of the state vector S =
(n1, u1,x/y/z;n2, u2,x/y/z;Ex/y/z;Bx/y/z). Our aim is to use Eqs.

(1) - (4) as an analytical basis for a perturbative description of the
evolution of the system’s state; at every stage, Eqs. (5) and (6) are
satisfied, if initially valid.
To simplify the calculation, we shall assume that the direction
of wave propagation defines the axis x, implying a wave number
k = kx̂ for linear waves, and that the external magnetic field B0
determines the z− axis, i.e. B0 = B0ẑ (here x̂, ŷ, ẑ denote the
unit vectors along the respective directions). All quantities are as-
sumed to vary along the direction of propagation, i.e. ∇ → ∂/∂x
(thus ∇ × · is x̂ × ∂ · /∂x here). Notice that a static magnetic
field component along the direction of propagation is prescribed by
Eqs. (6) and (the x−component of) (3), so that Bx = 0 is satis-
fied here, at all times. The analytical model (and frame) adopted
here agrees (for θ = π/2 therein) with the oblique propagation pic-
ture described in Refs. [1, 2, 3], and also in Ref. [4], for parallel
propagation in multi-component plasmas (i.e. for θ = 0).

3. Perturbative analysis

Reductive perturbation technique: consider small deviations from
the equilibrium state

S(0) = (n1,0,0;n2,0,0;0;B0)T ,

i.e.
S = S(0) + εS(1) + ε2S(2) + ...

where ε� 1 is a (real) smallness parameter. We assume that

S
(n)
j =

∞∑
l=−∞

S
(n,l)
j (X, T ) exp [il(kx− ωt)] ,

where the condition S
(n,−l)
j = S

(n,l)
j

∗
holds, for reality. The wave

amplitude is thus allowed to depend on the stretched (slow ) coor-
dinates of space

X = {εnx, n = 1, 2, ...} = {X1, X2, ...}
and time

T = {εnt, n = 1, 2, ...} = {T1, T2, ...}
(viz. X1 = εx, X2 = ε2x, and so forth; same for time), distin-
guished from the (fast) carrier variables x (≡ X0) and t (≡ T0).
According to the above considerations, we set:

∂

∂t
Ψ

(n)
l eilφ =

(
− ilωΨ

(n)
l + ε

∂Ψ
(n)
l

∂T1
+ ε2

∂Ψ
(n)
l

∂T2

)
eilφ +O(ε3) ,

∇Ψ
(n)
l eilφ =

(
+ ilkΨ

(n)
l + ε

∂Ψ
(n)
l

∂X1
+ ε2

∂Ψ
(n)
l

∂X2

)
eilφ +O(ε3) ,

(8)

for any l−th phase harmonic amplitude Ψ
(n)
l among the compo-

nents of S(n). The carrier (fundamental) phase is φ ≡ kx− ωt.
By inserting the above ansatz into Eqs. (1) to (4), one obtains a
set of (coupled) reduced evolution equations, which must be solved
in each perturbation order ∼ εn for the l−th harmonic amplitudes

S
(n,l)
j of the state variables (here, l = −n,−n + 1, ..., n− 1, n).

4. Multi-harmonic solution up to order ∼ ε2

The results for the ordinary (O-) mode (→ simplicity) read:

nj = nj,0 + ε c
(11)
j B′y e

iφc + ε2[c
(22)
j B′2ye

i2φc + n
(20)
j ]

uj = 0 + ε c
(11)
j,z B

′
ye
iφc ẑ

+ε2
{
c
(21)
j,z

∂B′y
∂X1

eiφcẑ +B′2ye
i2φc[c

(22)
j,x x̂ + c

(22)
j,y ŷ] + uj

(20)
}

E = 0 + ε c
(11)
el,zB

′
ye
iφcẑ

+ε2
{
c
(21)
el,z

∂B′y
∂X1

eiφcẑ +B′2ye
i2φc[c

(22)
el,xx̂ + c

(22)
el,y ŷ] + E(20)

}
B = B0ẑ + εB′ye

iφcŷ

+ε2
[
c
(21)
B,y

∂B′y
∂X1

eiφcŷ + c
(22)
B,zB

′2
ye
i2φcẑ + B(20)

]
+O(ε3) everywhere

(j = 1, 2 ≡ +,−), where B′y = B
(11)
y /B0 and φc = kx− ωt;

S
(20)
i are arbitrary state variable corrections satisfying

u
(20)
1,x = −u(20)

2,x = cE′y
(20)

, u
(20)
1,y = −u(20)

2,y = −cE′x
(20)

.

The amplitudes in the latter expressions are:

u
(11)
j,z = (−1)j i

Ωj
k
B′y , E′z

(11)
= − ω

ck
B′y ,

n
(11)
j = u

(11)
j,x = u

(11)
j,y = E

(11)
x = E

(11)
y = 0 ,

u
(21)
j,z = (−1)j

c2ω2
p,effΩj

ω2k2

∂B′y
∂X1

,

E
(21)
z = i

ω

ck2

∂B′y
∂X1

, B
(21)
y = −i

ω2 + ω2
p,eff

ω2k

∂B′y
∂X1

,

n
(21)
j = u

(21)
j,x/y

= E
(21)
x/y

= B
(21)
x/z

= 0 ,

u
(22)
j,x =

ωn
(22)
j

knj,0
=
D

(22)
j,x

D
(22)
0

B′y
2
, u

(22)
j,y =

D
(22)
j,y

D
(22)
0

B′y
2
, u

(22)
j,z = 0

E
(22)
x =

D
(22)
el,x

D
(22)
0

B′y
2
, E

(22)
y =

ω

ck
B

(22)
z =

D
(22)
el,y

D
(22)
0

B′y
2
,

E
(22)
z = = B

(22)
y = 0 ,

where j = 1, 2 ≡ +,−; D
(nl)
∗,† are omitted here.

5. Nonlinear Schrödinger (NLS) equation for B
(11)
y :

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0 . (9)

where

• ψ ≡ B
(11)
y (ζ, τ ).

• ζ = X1 − vgT1, τ = T2 (vg = ω′(k) is the group velocity).

•Dispersion coefficient: P = 1
2ω
′′(k) = c2ω2

p,eff/(2ω
3).

•Nonlinearity coefficient: Q = Q({ωj,Ωj, nj,0}) = ...
(→ a lengthy expression, omitted here).

6. Modulational (in)stability of EM wavepacket

• Plane wave solution of (9): ψ = ψ0 exp(iQ|ψ0|2τ );

• Linear analysis: set ψ̂ = ψ̂0 + ε ψ̂1,0 cos (k̃ζ − ω̃τ );

• (Perturbation) dispersion relation:

ω̃2 = P k̃2 (P k̃2 − 2Q|ψ̂1,0|2) ; (10)

• If PQ < 0, the amplitude ψ is stable;

• If PQ > 0, the amplitude ψ is unstable for k̃ <
√

2Q/P |ψ̂1,0|.
We conclude that the stability profile simply depends of the sign
of the product PQ, which may be investigated in terms of the
wavenumber k, in addition to intrinsic plasma parameters.

7. Envelope soliton solutions of the NLS Equation

Modulated wave-form:

ψ = εψ̂0 cos(k · r− ωt + Θ) +O(ε2) .

The amplitude ψ0 and phase correction Θ are functions of {ζ, τ}.
These are given by exact expressions (here omitted).
The solutions thus obtained represent localized envelope excita-
tions:

Figure 2. Bright-type envelope solitons (for PQ > 0).

Figure 3. Dark-/grey-type envelope solitons (for PQ < 0).

→ excellent agreement with the observed structures!)
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