Nonlinear excitations in dusty plasma (Debye) crystals: a new test-bed for nonlinear theories

Ioannis Kourakis ${ }^{1,2}$, Vassilios Koukouloyannis ${ }^{3}$ and Padma Kant Shukla
${ }^{1}$ Centre for Plasma Physics (CPP), Queen's University Belfast, BT7 1 NN Northern Ireland, UK; Email: i.kourakis@qub.ac.uk , www.kourakis.eu
${ }^{2}$ Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Germany; ${ }^{3}$ School of Physics, Theoretical Mechanics, Aristotle University of Thessaloniki, Greece

1. Introduction

Nonlinear processes in strongly coupled dusty plasmas (DP) have attracted theoretical interest recently, motivated by recent experiments. Dust (quasi-)lattices (DL) (2D or 3D) are typically formed in the sheath region above the negative electrode in discharge experiments, horizontally suspended at a levitated equilibrium position, at $z=z_{0}$, where gravity and electric (and/or magnetic) forces balance. Appropriate trapping potentials have also enabled the realization of 1D lattices, dominated by electrostatic interactions.

(from [1a])

The linear regime of low-frequency oscillations in DP crystals, in the longitudinal (acoustic mode) and transverse (in-plane, shear acoustic mode and vertical, off-plane optical mode) direction(s), is now quite well understood. However, the nonlinear (NL) behaviour of DP crystals is little explored, and has lately attracted experimental $[1-3]$ and theoretical $[4-7]$ interest. We have recently considered the coupling among the horizontal $(\sim \hat{x})$ and vertical (off-plane, $\sim \hat{z}$) degrees of freedom in dust mono-layers; a set of NL equations for coupled longitudinal and transverse dust lattice (LDL, TDL) motion was thus derived [4].
Here, we review the nonlinear dust grain excitations which may occur in a DP crystal (assumed quasi-one-dimensional and infinite, composed from identical grains, of equilibrium charge q and mass M, located at $\left.x_{n}=n r_{0}, n \in \mathcal{N}\right)$. Damping is omitted here.
2. Transverse envelope structures (continuum)

Taking into account the intrinsic nonlinearity of the sheath electric (and/or magnetic) potential, the vertical (off-plane) n-th grain displacement $\delta z_{n}=z_{n}-z_{0}$ in a dust crystal (where $n=\ldots,-1,0,1,2, \ldots)$, obeys the equation
$\frac{d^{2} \delta z_{n}}{d t^{2}}+\nu \frac{d\left(\delta z_{n}\right)}{d t}+\omega_{T, 0}^{2}\left(\delta z_{n+1}+\delta z_{n-1}-2 \delta z_{n}\right)+\omega_{g}^{2} \delta z_{n}$
$+\alpha\left(\delta z_{n}\right)^{2}+\beta\left(\delta z_{n}\right)^{3}=0 .(1)$
(where coupling anharmonicity and second + neighbor interactions are omitted)
The characteristic frequency

$\omega_{T, 0}=\left[-q U^{\prime}\left(r_{0}\right) /\left(M r_{0}\right)\right]^{1 / 2}$

is related to the (electrostatic) interaction potential; for a DebyeHückel potential: $U_{D}(r)=(q / r) e^{-r / \lambda_{D}}$, one has

$$
\omega_{0, D}^{2}=\omega_{D L}^{2} \exp (-\kappa)(1+\kappa) / \kappa^{3}
$$

$\omega_{D L}=\left[q^{2} /\left(M \lambda_{D}^{3}\right)\right]^{1 / 2}$ is the characteristic dust-lattice frequency λ_{D} is the Debye length; $\kappa=r_{0} / \lambda_{D}$ is the DP lattice parameter. The on-site electric potential near equilibrium $\left(z=z_{0}\right)$ reads

$$
\Phi(z) \approx \Phi\left(z_{0}\right)+M\left[\omega_{g}^{2} \delta z_{n}^{2} / 2+\alpha\left(\delta z_{n}\right)^{3} / 3+\beta\left(\delta z_{n}\right)^{4} / 4\right]+\ldots
$$

G. Sorasio et al., 2002)
(in account of the electric and/or magnetic field inhomogeneity and charge variations), which is related to the overall vertical force

$$
F(z)=F_{e l / m}(z)-M g \equiv-\partial \Phi(z) / \partial z
$$

Linear excitations, viz. $\delta z_{n} \sim \cos \phi_{n}$ (here $\phi_{n}=n k r_{0}-\omega t ; k$ and ω are the wavenumber and frequency; damping is neglected) obey the optic-like discrete backward wave [1] dispersion relation

(from [1c])
A multiple scale technique for a continuum wavepacket gives [5]: $\delta z_{n} \approx \epsilon\left(A e^{i \phi_{n}}+\right.$ c.c. $)+\epsilon^{2}\left[w_{0}^{(2)}+\left(w_{2}^{(2)} e^{2 i \phi_{n}}+\right.\right.$ c.c. $\left.)\right]+$ where $w_{0}^{(2)} \sim|A|^{2}, w_{2}^{(2)} \sim A^{2}$.

The amplitude A obeys the nonlinear Schrödinger equation:

$$
i \frac{\partial A}{\partial T}+P \frac{\partial^{2} A}{\partial X^{2}}+Q|A|^{2} A=0
$$

where $\{X, T\}$ are the slow variables $\left\{\epsilon\left(x-v_{g} t\right), \epsilon^{2} t\right\}$ The dispersion coefficient $P_{T}=\omega_{T}^{\prime \prime}(k) / 2$ takes negative (positive) values for low (high) k.
The nonlinearity coefficient $Q=\left[10 \alpha^{2} /\left(3 \omega_{q}^{2}\right)-3 \beta\right] / 2 \omega_{T}$ is positive for all known experimental values of $\alpha, \beta[3]$.
For small wavenumbers k (where $P Q<0$), TDLWs will be modulationally stable, and may propagate in the form of dark/grey envelope excitations (hole solitons or voids [5].
For larger k, modulational instability may lead to the formation of bright (pulse) envelope solitons.
Exact expressions for these excitations can be found in [5].

Fig. Envelope solitons of the (a, b) bright type; (c, d) dark (black/grey) type.
3. Transverse Intrinsic Localized Modes (ILMs) - Discrete Breathers (DBs)

ILMs, i.e. highly localized Discrete Breather (DB) and multi-breather-type few-site vibrations have recently received increased interest among researchers in solid state physics, due to their omnipresence in periodic lattices and remarkable physical properties [6]. Dusty plasma DB excitations were shown to occur in transverse DL motion [7-10] from first principles (figure from [9]).

The existence of such $D B$ structures at a frequency $\omega_{D B}$) generally requires the non-resonance condition

$$
n \omega_{D B} \neq \omega(k) \quad \forall n \in \mathcal{N}
$$

which is, remarkably, satisfied in all known TDLW experiments [1]. The existence of DBs in 2D (hexagonal) dusty plasma structures is now under investigation [10].

4. Longitudinal envelope excitations

The NL longitudinal equation of motion ($\delta x_{n}=x_{n}-n r_{0}$) reads: $\frac{d^{2}\left(\delta x_{n}\right)}{d t^{2}}+\nu \frac{d\left(\delta x_{n}\right)}{d t}=\omega_{0, L}^{2}\left(\delta x_{n+1}+\delta x_{n-1}-2 \delta x_{n}\right)$ $-a_{20}\left[\left(\delta x_{n+1}-\delta x_{n}\right)^{2}-\left(\delta x_{n}-\delta x_{n-1}\right)^{2}\right]$
$+a_{30}\left[\left(\delta x_{n+1}-\delta x_{n}\right)^{3}-\left(\delta x_{n}-\delta x_{n-1}\right)^{3}\right]$,
(4)
where the characteristic frequency is given by
$\left.\omega_{0, L}^{2}=\left[U^{\prime \prime}\left(r_{0}\right) / M\right)\right]=2 \omega_{D L}^{2} \exp (-\kappa)\left(1+\kappa+\kappa^{2} / 2\right) / \kappa^{3}$
for Debye interactions.
The resulting acoustic linear mode ${ }^{4}$ obeys

$$
\omega^{2}=4 \omega_{L, 0}^{2} \sin ^{2}\left(k r_{0} / 2\right) \equiv \omega_{L}^{2} .
$$

One now obtains (to lowest order $\sim \epsilon$)
$\delta x_{n} \approx \epsilon\left[u_{0}^{(1)}+\left(u_{1}^{(1)} e^{i \phi_{n}}+\right.\right.$ c.c. $\left.)\right]+\epsilon^{2}\left(u_{2}^{(2)} e^{2 i \phi_{n}}+\right.$ c.c. $)+.$. where $u_{1 / 0}^{(1)}$ obey [11]

$$
\begin{gather*}
i \frac{\partial u_{1}^{(1)}}{\partial T}+P_{L} \frac{\partial^{2} u_{1}^{(1)}}{\partial X^{2}}+Q_{0}\left|u_{1}^{(1)}\right|^{2} u_{1}^{(1)}+\frac{p_{0} k^{2}}{2 \omega_{L}} u_{1}^{(1)} \frac{\partial u_{0}^{(1)}}{\partial X}=0 \\
\frac{\partial^{2} u_{0}^{(1)}}{\partial X^{2}}=-\frac{p_{0} k^{2}}{v_{g, L}^{2}-\omega_{L, 0}^{2} r_{0}^{2}} \frac{\partial}{\partial X}\left|u_{1}^{(1)}\right|^{2} \tag{6}
\end{gather*}
$$

Here $v_{g, L}=\omega_{L}^{\prime}(k)$, and $\{X, T\}$ are slow variables (as above). We have defined:
$p_{0}=-r_{0}^{3} U^{\prime \prime \prime}\left(r_{0}\right) / M \equiv 2 a_{20} r_{0}^{3}, \quad q_{0}=U^{\prime \prime \prime \prime}\left(r_{0}\right) r_{0}^{4} /(2 M) \equiv 3 a_{30} r_{0}^{4}$ (both positive, and similar in magnitude for Debye interactions $[4,12]$); recall that U is the interaction potential.
Eqs. (5), (6) can be combined into an NLSE in the form of Eq. (3), for $A=u_{1}^{(1)}$ here, with $P=P_{L}=\omega_{L}^{\prime \prime}(k) / 2<0$. The sign of $Q>0(<0)[11]$ prescribes stability (instability) at low (high) k.

Longitudinal envelope excitations are asymmetric: rarefactive bright or compressive dark envelope structures.

Fig. (a) Bright type; (b) dark type asymmetric envelope solitons.

5. Longitudinal solitons

Equation (4) is essentially the equation of atomic motion in a chain with anharmonic springs, i.e. in the celebrated FPU (Fermi-Pasta-Ulam) problem. At a first step, one may adopt a continuum description, viz. $\delta x_{n}(t) \rightarrow u(x, t)$. This leads to different nonlinear evolution equations (depending on the simplifying hypotheses adopted), some of which are critically discussed in [12]. What follows is a summary of the lengthy analysis therein.
Keeping lowest order nonlinear and dispersive terms, $u(x, t)$ obeys
$\ddot{u}+\nu \dot{u}-c_{L}^{2} u_{x x}-\frac{c_{L}^{2}}{12} r_{0}^{2} u_{x x x x}=-p_{0} u_{x} u_{x x}+q_{0}\left(u_{x}\right)^{2} u_{x x}$,
where $(\cdot)_{x} \equiv \partial(\cdot) / \partial x ; c_{L}=\omega_{L, 0} r_{0} ; p_{0}$ and q_{0} were defined above. Assuming near-sonic propagation (i.e. $v \approx c_{L}$), and defining the relative displacement $w=u_{x}$, one has

$$
w_{\tau}-a w w_{\zeta}+\hat{a} w^{2} w_{\zeta}+b w_{\zeta \zeta \zeta}=0
$$

(8)

(for $\nu=0$), where

$a=p_{0} /\left(2 c_{L}\right)>0, \hat{a}=q_{0} /\left(2 c_{L}\right)>0$, and $b=c_{L} r_{0}^{2} / 24>0$.
Following Melands \varnothing [13], various studies have relied on the Korteweg - deVries (KdV) equation, i.e. Eq. (8) for $\hat{a}=0$, to gain analytical insight in the compressive structures observed in experiments [2]. Indeed, the KdV Eq. possesses negative (only, here, since $a>0$) supersonic pulse soliton solutions for w, implying a compressive (anti-kink) excitation for u; the KdV soliton is thus interpreted as a density variation in the crystal, viz. $n(x, t) / n_{0} \sim-\partial u / \partial x \equiv-w$. Also, the pulse width L_{0} and height u_{0} satisfy $u_{0} L_{0}^{2}=c s t$., a feature which is confirmed by experiments [2]. However, $\hat{a} \approx 2 a$ in real Debye crystals (for $\kappa \approx 1$), which invalidates the KdV approximation $\hat{a} \approx 0$ [12]). Instead, one may employ the extended $K d V$ Eq. (eKdV) (8), which accounts for both compressive and rarefactive lattice excitations (exact expressions in [12]). Alternatively, Eq. (7) can be reduced to a Generalized Boussinesq (GBq) Equation [12]; again, for $q_{0} \sim \hat{a} \approx 0$, one recovers a Boussinesq (Bq) equation, widely studied in solid chains. The $\mathrm{GBq}(\mathrm{Bq})$ equation yields, like its eKdV (KdV) counterpart, both compressive and rarefactive (only compressive, respectively) solutions; however, the (supersonic) propagation speed v now does not have to be close to c_{L}. The lengthy analysis (see in [12] for details) is not reproduced here.

6. Longitudinal Discrete Breathers ?

Following existing studies on Discrete Breathers (ILMs) in FPU chains [cf. (4) above], it is natural to anticipate the existence of such localized excitations associated with longitudinal dust grain motion. A detailed investigation, in terms of real experimental parameters, is on the way and will be reported soon.

References

[1] S. Takamura et al., PoP 8
[2] D. Samsonov et al., PRL 88095004 (2002); K. Avinash et al., PRE 68, 046402 (2003).
[3] C. Zafiu et al., Phys. Rev. E 63066403 (2001); A. V. Ivlev et al., PRL 85, 4060 (2000),
[4] I. Kourakis and P. K. Shukla, Physica Scripta T113, 97 (2004).
[5] I. Kourakis and P. K. Shukla, Phys. Plasmas, 11, 2322 (2004); idem, 11, 3665 (2004).
[6] D. K. Campbell, S. Flach and Yu. S. Kivshar, Physics Today, $\mathbf{5 7}$ (1) (2004).
[7] I. Kourakis and P. K. Shukla, Phys. Plasmas, 12, 014502 (2005).
[8] I. Kourakis, P. K. Shukla and V. Basios, Proc. 2004 ICPP (Nice, France):
hal.ccsd.cnrs.fr/ccsd-00001892/en/
[9] V. Koukouloyannis and I. Kourakis, Physical Review E, 76, 016402/1-10 (2007).
[10] V. Koukouloyannis and I. Kourakis, Multi-site breather excitations in hexagonal dusty
ttices, in preparation.
[11] I. Kourakis and P. K. Shukla, Phys. Plasmas, 11, 1384 (2004).
[12] I. Kourakis and P. K. Shukla, Eur. Phys. J. D, 29, 247 (2004).
[13] F. Melands \varnothing, Phys. Plasmas 3, 3890 (1996)

