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1. Prerequisites: NL excitations & pair plasmas

The purpose of this study is to investigate the occurrence of non-
linear ES/EM modes in pair plasmas .

Pair plasmas (p.p.) are plasmas consisting of two particle
species (say, 1+ and 2−) of equal mass and opposite charge (i.e.,
q1 = −q2 = +Ze and m1 = m2 = m).

No plasma or cyclotron frequency separation occurs in p.p.; fur-
thermore, a variety of novel physical phenomena (e.g. absence of
Faraday rotation) characterizes electrostatic (ES) and electromag-
netic (EM) wave propagation in such plasmas [1].

Although this simple description of pair plasmas was originally in-
troduced to model (for Z = 1, here)electron-positron ( e-p) plas-
mas(yet overseeing e-p annihilation-recombination processes, here
neglected throughout), it may claim to provide a consistent model
of fullerene-ion pair plasma configurations which were recently suc-
cessfully produced in experiments [2].

Significant research effort has recently focused on the properties of
linear and nonlinear wave propagation in such plasmas [1, 2, 3, 4].

“3-component” p.p.: The pair species’ densities at equilib-
rium, although equal in a symmetric (“pure”) p.p. configuration,
may differ if the charge balance is affected by a 3rd population,
e.g. a massive charged defect species 3± (e.g. dust [5]), assumed
present as a stationary background. We shall refer to such p.p. as
“3-component” or “doped” p.p.

This picture also refers to the presence of heavy ions in electron-
positron-ion (e-p-i) plasmas.

Nonlinear structures (solitary waves) are ubiquitous in
plasmas. These may either have the form of localised pulses, or of
envelope solitons. The latter generated via modulational insta-
bility (MI), a well-known mechanism of energy localization domi-
nating wave propagation in nonlinear dispersive media. Modulated
envelope structures are generally modelled by means of the nonlin-
ear Schrödinger theory.

Amplitude modulation is a mechanism well known to be associ-
ated with harmonic generation and the formation of localized
envelope modulated wave packets , such as the ones abundantly
observed during laboratory experiments and satellite observations,
e.g. in the Earth’s magnetosphere:
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Caption: Satellite observations of modulation phenomena:
(a) Cluster data, from O. Santolik et al., J. Geophys. Res. 108, 1278 (2003);
(b) FAST data, from R. Pottelette et al., Geophys. Res. Lett. 26 (16) 2629
(1999);

(c), (d) from Ya. Alpert, Phys. Reports 339, 323 (2001).

2. A (2+1)-fluid model for ES modes in pair-plasmas

We consider a multi-component collisionless plasma, composed of:

* (species 1) positive ions, or positrons (mass m1, charge q1 =
s1Z1e = +Ze) and

* (species 2) negative ions, or electrons (mass m2 = m, charge
q2 = s2Z2e = −Ze).
* (species 3) massive, immobile particles (e.g. dust, or ions in e-p-i
plasmas), charge q3 = s3Z3e (where s3 = ±1), mass m3 � m1/2.

* We have defined the charge state(s) Zj (j = 1, 2, 3), the charge
sign sj = qj/|qj| = ±1 and the absolute electron charge e; we shall
denote the respective equilibrium number densities by nj,0.

* Application 1: Pair i+-i− plasmas ( dusty or “pure”):
Z, Z3 arbitrary;

* Application 2: electron-positron-ion (e-p-i) plasmas:
Z1 = Z2 = Z3 = 1, m1 = m2 � m3 = mi.

We consider the (two-) fluid density and momentum equations:

∂nj
∂t

+∇ · (nj uj) = 0 (1)

∂uj
∂t

+ uj · ∇uj = −sj
Ze

m
∇φ− 1

mnj
∇pj , (2)

for the species j (= 1, 2). Also, the adiabatic equation of state

pj = Cn
γ
j , pj,0 = nj,0kBTj , γ = 1 + 2/f ,

for f degrees of freedom. Finally, Poisson’s equation reads

∇2Φ = −4π
∑
s

qs ns = 4π e (Z n− − Z n+ − s3Z3 n3) (3)

Here, n3 =constant. Cases covered include:

* “Pure” p.p. (or e-p): n3 = 0, i.e. n+,0 = n−,0, whereas

* in e−p+i+ or X+X−d±: n3 6= 0 .

The RHS of Poisson’s Eq. (3) cancels at equilibrium (only):

Z1n1,0 − Z2n2,0 + s3n3Z3 = 0 , (4)

However, we underline the fact that no a priori assumption is made
on the (conservation of) charge neutrality (or density balance; aka
the plasma approximation) during dynamical evolution in time.

3. Linear ES wave dispersion properties

The dispersion relation of ES modes reads:

1

ω2 − 3k2
+

β

ω2 − 3σβ2k2
= 1 , (5)

where β = n+,0/n−,0 is the density ratio and σ = T+/T− is
the temperature ratio, among the pair components. Two branches
exist, say ω = ωL(k) and ω = ωU (k). The exact expres-
sions are presented and analyzed in Ref. [3]. The lower branch
ωL describes an acoustic mode, as ωL(0) = 0, while the up-
per one bears a Langmuir-type curve, featuring a cutoff frequency
ωU (0) = (1 + β)1/2 (in units of ωp,−). Interestingly, no acoustic
mode in principle exists for perfectly symmetric (“pure” p.p.) con-
figurations; to see this, set β = σ = 1 in (5) abovea, to obtain
ω2 = 2 + 3k2 (cf. literature[2]). Asymmetric p.p. are henceforth
implicitly assumed everywhere, here. Near k = 0, we obtain

ωL(k) ≈ c2sk
2 , ωU (k) ≈ (ω2

c + c2sk
2)1/2 . (6)

where

ωc = (1 + β)1/2 , cs = [3 β(1 + σβ)/(1 + β)]1/2 .

Note the dependence on the background (third) species (via β),
and also on the pair species’ T asymmetry (via σ).

4. Nonlinear analysis-reductive perturbation [6]

* Consider small deviations from the equilibrium state S0

* Assume, for all state variables Sl (l = 1, ..., 5):

Sl(x, t) = S0,l +

∞∑
m=1

εn
∞∑

L=−∞
S

(n)
L,l (ζ, τ ) exp[iL(kx− ωt)]

where ε� 1 is a small real; S
(n)
L,l = (S

(n)
−L,l)

∗ is implied.

* allow for a weak modulation of the amplitude(s) Aj via

ζ = ε
(
x− vg t

)
and τ = ε2t,

where λ = vg = dω/dk is the group velocity [6].
aThis suggests an asymmetry among the pair ion species in the experiment(s)

of Oohara and Hatakeyama [2] where an acoustic mode (?) was reported.

The tedious algebra leads, to order ε2, to the result

φ ≈ ε ψ cos θc + ε2
[
φ

(2)
0 +φ

(2)
1 cos θc+φ

(2)
2 cos 2θc

]
+O(ε3) , (7)

for the electric potential φ; ψ represents the (linear) carrier wave
(unperturbed phase θc = kx−ωt); similar expressions are obtained
for n+/− and u+/−.
We anticipate a solution in the form ψ = ψ0 exp iΘ, where ψ0 and
Θ represent the potential (wavepacket) amplitude and a (small)
phase correction, leading to a weakly varying total phase

θ = θc + ε2Θ +O(ε3) .

5. Nonlinear Schrödinger (NLS) equation for ψ = φ
(1)
1 :

In order n = 3, we obtain the compatibility equation:

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0 . (8)

•Dispersion coefficient: P = 1
2ω
′′(k) = ....

•Nonlinearity coefficient: Q = Q({ω; β, σ, ...}) = ...
(→ a lengthy expression, omitted here).

6. Modulational (in)stability of ES wavepackets

• Plane wave solution of (8): ψ = ψ0 exp(iQ|ψ0|2τ );

• Linear analysis: set ψ̂ = ψ̂0 + ε ψ̂1,0 cos (k̃ζ − ω̃τ );

• (Perturbation) dispersion relation:

ω̃2 = P k̃2 (P k̃2 − 2Q|ψ̂1,0|2) ; (9)
• If PQ < 0, the amplitude ψ is stable;

• If PQ > 0, the amplitude ψ is unstable for k̃ <
√

2Q/P |ψ̂1,0|.
•Here: The acoustic mode is stable (PQ < 0) (see Fig. below)

• The upper (optic) mode is unstable (PQ > 0) (see Fig. below).

The NLSE coefficient ratio P/Q corresponding to the lower (acoustic) dispersion branch ωL is depicted

against the (reduced) wavenumber k. (a) σ = 1 and different values of β are considered; (b) β = 0.95, and

σ varies. Note that curves overlap. The acoustic mode is stable. After Ref. [3].

The NLSE coefficient ratio P/Q corresponding to the upper (optic) dispersion branch ωU is depicted against

the (reduced) wavenumber k. (a) σ = 1 and different values of β are considered; (b) β = 0.95, and σ varies.

The upper (optic) mode is unstable. After Ref. [3].

7. Envelope soliton solutions of the NLS Equation

Modulated wave-form:

ψ = εψ̂0 cos(k · r− ωt + Θ) +O(ε2) .

The amplitude ψ0 and phase correction Θ are functions of {ζ, τ}.
These are given by exact expressions (here omitted).
These solutions represent localized envelope excitations:

Bright-type envelope solitons (for PQ > 0).

Dark-/grey-type envelope solitons (for PQ < 0).

8. Electromagnetic wavepackets in pair plasmas

The analogous investigation for EM waves propagating in p.p. has
been carried out, for the ordinary mode (O-mode), in [4].
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