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Motivation - History

• 1996: Theoretical prediction of longitudinal dust-lattice (DL)
waves (acoustic mode) and LDL solitons (compressive, only)

• 2002: Experimental confirmation of compressive LDL solitons

• 2004: Theoretical modelling of compressive and rarefactive
LDL solitons

• 2008: Experimental confirmation of rarefactive LDL solitons
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Outline

1. Prerequisites

2. The Melandsø theory (Melandsø, 1996)

3. Experimental confirmation (Samsonov, 2002)

4. An extended nonlinear theory (I Kourakis & P Shukla, 2004)

5. Conclusions
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1. Preliminaries - Model Hamiltonian

H =
∑

n

1
2

M

(
drn

dt

)2

+
∑
m6=n

Uint(rnm) + Φext(zn)

Terms include:

– Kinetic energy

– External force fields: Φext(zn); may account for confinement
potentials and/or sheath electric forces, i.e. Fsheath(z) = −∂Φ

∂z

– ES Coupling: Uint(rnm) is the interaction potential energy .
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(Nonlinear ) longitudinal excitations.

The nonlinear equation of longitudinal motion reads:

d2(δxn)
dt2

= ω2
0,L (δxn+1 + δxn−1 − 2δxn)

−a20

[
(δxn+1 − δxn)2 − (δxn − δxn−1)2

]
+ a30

[
(δxn+1 − δxn)3 − (δxn − δxn−1)3

]
– δxn = xn − nr0: longitudinal dust grain displacements

– Cf. Fermi-Pasta-Ulam (FPU) problem:
anharmonic spring chain model.
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Coefficients (for Debye interactions)

In general:

a20 = − 1
2M

U ′′′(r0) , a30 =
1

6M
U ′′′′(r0) ,

ω2
0,L = U ′′(r0)/M ,

For a Debye (Yukawa) potential UD(r) = Q2 e−r/λD/r:

ω2
0,L =

2Q2

Mλ3
D

e−κ 1 + κ + κ2/2
κ3

≡ c2
L/(κ2λ2

D) ,

p0 ≡ 2a20κ
3λ3

D =
6Q2

MλD
e−κ

(
1
κ

+ 1 +
κ

2
+

κ2

6

)
,

q0 ≡ 3a30κ
4λ4

D =
Q2

2MλD
e−κ 1

κ

(
κ4 + 4κ3 + 12κ2 + 24κ + 24

)
.
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2. The Melandsø (1996) theory

Q.: A link to soliton theories: the Korteweg-deVries Equation.

– Continuum approximation, viz. δxn(t) → u(x, t).

– “Standard” description: keeping lowest order nonlinearity,

ü +ν u̇− c2
L uxx −

c2
L

12 r2
0 uxxxx = − p0 ux uxx

cL = ωL,0 r0; ωL,0 and p0 were defined above.

– For near-sonic propagation (i.e. v ≈ cL), slow profile evolution
in time τ and defining the relative displacement w = uζ, one
obtains

wτ − aw wζ + b wζζζ = 0

(for ν = 0); ζ = x− vt; a = p0/(2cL) > 0; b = cLr2
0/24 > 0.
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The KdV description
The Korteweg-deVries (KdV) Equation

wτ − aw wζ + b wζζζ = 0

yields compressive (only, here) solutions, in the form (here):

w1(ζ, τ) = −w1,msech2

[
(ζ − vτ − ζ0)/L0

]
– This solution is a negative pulse for w = ux,
describing a compressive excitation for the displacement δx = u,
i.e. a localized increase of density n ∼ −ux.

www.tp4.rub.de/∼ioannis/conf/200806-ICOPS-oral2.pdf ICOPS/IEEE, Karlsruhe 16-19 June 2008



I. Kourakis, Localized excitations in dusty plasma crystals 8

The KdV description
The Korteweg-deVries (KdV) Equation

wτ − aw wζ + b wζζζ = 0

yields compressive (only, here) solutions, in the form (here):

w1(ζ, τ) = −w1,msech2

[
(ζ − vτ − ζ0)/L0

]
– Pulse amplitude: w1,m = 3v/a = 6vv0/|p0|;
– Pulse width: L0 = (4b/v)1/2 = [2v2

1r
2
0/(vv0)]1/2;

– Note that: w1,mL2
0 = constant (cf. experiments)†.

– This solution is a negative pulse for w = ux,
describing a compressive excitation for the displacement δx = u,
i.e. a localized increase of density n ∼ −ux.

F Melandsø 1996; S Zhdanov et al. 2002; K Avinash et al. 2003; V Fortov et al. 2004.
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Characteristics of the KdV theory

The Korteweg - deVries theory:

– provides a qualitative description of compressive excitations;

– benefits from the KdV “artillery” of analytical know-how:
integrability, multi-soliton solutions, conservation laws, ... ;

but possesses certain drawbacks:

– approximate derivation:
– propagation velocity v near (longitudinal) sound velocity cL,
– time evolution terms omitted ‘by hand’,
– higher order nonlinear contributions omitted;

– only accounts for compressive solitary excitations (for Debye
interactions).
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3. Experimental observation of LDL solitons

[Samsonov et al., PRL 2002].

• Only compressive solitons predicted by KdV theory

• Only compressive solitons anticipated (and thus reported)

• What about rarefactive longitudinal solitons?
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4. Extended longitudinal soliton formalism

Q.: What if we also kept the next order in nonlinearity ?

– “Extended” description: :

ü + ν u̇− c2
L uxx −

c2
L

12
r2
0 uxxxx = − p0 ux uxx + q0 (ux)2 uxx

cL = ωL,0 r0; ωL,0, p0 ∼ −U ′′′(r) and q0 ∼ U ′′′′(r) (cf. above).

Rq.: q0 is not negligible, compared to p0! (instead, q0 ≈ 2p0 practically!)
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4. Extended longitudinal soliton formalism (continued)

Q.: What if we also kept the next order in nonlinearity ?

– “Extended” description: :

ü + ν u̇− c2
L uxx −

c2
L

12
r2
0 uxxxx = − p0 ux uxx + q0 (ux)2 uxx

cL = ωL,0 r0; ωL,0, p0 and q0 were defined above.

– For near-sonic propagation (i.e. v ≈ cL), and defining the
relative displacement w = uζ, one has

wτ − aw wζ + â w2 wζ+ b wζζζ = 0 (1)

(for ν = 0); ζ = x− vt; a = p0/(2cL) > 0; b = cLr2
0/24 > 0;

â = q0/(2cL) > 0.
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Characteristics of the EKdV theory

The extended Korteweg - deVries Equation:
– accounts for both compressive and rarefactive excitations;

(horizontal grain displacement u(x, t))
– reproduces the correct qualitative character of the KdV
solutions (amplitude - velocity dependence, ... );
– is previously widely studied, in literature;
Still, ...
– It was derived under the assumption: v ≈ cL.
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One more alternative: the Boussinesq theory
The Generalized Boussinesq (Bq) Equation (for w = ux):

ẅ − c2
L wxx = c2

Lr2
0

12 wxxxx − p0
2 (w2)xx + q0

2 (w3)xx

– predicts both compressive and rarefactive excitations;
– reproduces the correct qualitative character of the KdV
solutions (amplitude - velocity dependence, ... );
– has been widely studied in literature;
and, ...
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One more alternative: the Boussinesq theory
The Generalized Boussinesq (Bq) Equation (for w = ux):

ẅ − c2
L wxx = c2

Lr2
0

12 wxxxx − p0
2 (w2)xx + q0

2 (w3)xx

– predicts both compressive and rarefactive excitations;
– reproduces the correct qualitative character of the KdV
solutions (amplitude - velocity dependence, ... );
– has been widely studied in literature;
and, ...

– relaxes the velocity assumption, i.e. is valid ∀ v > cL.
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“Breaking News”:
Experimental observation of rarefactive LDL solitons (2008)

Ralf Heidemann et al,
Int. Conf. Phys. Dusty Plasmas (Azores, Portugal), May 2008.
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Conclusions

• Compressive and/or rarefactive longitudinal solitons may exist

• Their characteristics are determined by inter-grain interactions

• They are efficiently described by an extended KdV theory for
near-sonic velocity, or by an extended Boussinesq theory for
arbitrary velocity

• Experiments at preliminary stage, relation/agreement with
theory to be investigated.
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Conclusions

• Compressive and/or rarefactive longitudinal solitons may exist

• Their characteristics are determined by inter-grain interactions

• They are efficiently described by an extended KdV theory for
near-sonic velocity, or by an extended Boussinesq theory for
arbitrary velocity

• Experiments at preliminary stage, relation/agreement with
theory to be investigated.

Thank You!
Material from: I. Kourakis and P. K. Shukla, Eur. Phys. J. D, 29, 247 (2004).

Slides at: www.kourakis.eu .
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