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• Basic questions to be addressed:

⋆ What are nonlinear waves?

⋆ How are they formed?

⋆ Where do we find NWs?

⋆ Why study NWs?

⋆ Are these of any use, e.g. in applications?

⋆ Focus on NWs in plasma physics
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Solitary waves crossing on a beach

I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf

3

Tidal wave on river Severn (England):
goddess Sabrina (later Noadu) rode on the crest of the Severn bore

according to an ancient (Gaellic) myth
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Tidal wave on river Severn (2): surfer’s paradise

[M. A. Porter, N. J. Zabusky, B. Hu, D. K. Campbell, American Scientist 97 (3), 214 (2009)]
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Ocean solitons east of the Strait of Gibraltar

[Credit: Frank Verheest.]
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Internal solitons in the Andaman sea (1)
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Internal solitons in the Andaman sea (2)
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Solitary clouds west of Africa

[Credit: Frank Verheest.]
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“Morning Glory” cloud on Gulf of Carpentaria (Australia)

[Credit: Frank Verheest.]
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“Morning Glory” cloud on Gulf of Carpentaria (Australia) (2)
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Laser plasma experiments on electrostatic waves
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Laser plasma experiments on electrostatic waves (2)

(Credit: Lorenzo Romagnani & Marco Borghesi, Queen’s University Belfast, UK)
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Electron-holes observed via proton imaging diagnostics
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FAST satellite observations of large solitary spikes in the
Earth’s auroral region
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FAST auroral observations (2)
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Electrostatic potential and electric field bipolar structures (1)
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ES potential and E-field: bipolar vs monopolar structures (2)
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An advanced topic: “Rogue waves” (freak waves) – an emerging concept

• Rogue waves are localized excitations (events) of extreme amplitude,

exceeding twice the average strength of background turbulence level;

Data from the Draupner platform event in Norway (Jan. 1995).

Credit: Kharif & Pelinovsky, Eur. Journal of Mechanics B/Fluids 22, 603 (2003).
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Rogue wave measurements at Campos Basin, Brazil

[Credit: Pinho et al., Geofizika 21 (2004); Liu and Pinho, Annales Geophysicae, 22, 1839 (2004)]
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Credit: D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007).
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Outline

• Introduction: Nonlinear Nature, Nonlinear World : Prerequisites

• Solitary Waves – a paradigm across scientific disciplines:

first principles, modelling, conditions for occurrence

• Focus on charged many-particle systems (plasmas)

• Part A: Korteweg - de Vries soliton theory : history and applications

• Part B: Energy localization and nonlinear Schrödinger theory

for envelope pulses: from first principles to observables

• Conclusions and Summary
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Nonlinear excitations – preliminaries

Solitary waves (SWs):

• ... occur in abundance in Nature, in various physical contexts

• ... are localized coherent structures, bearing remarkable properties:

preserve their shape (stationary profile), are robust, i.e. persist against

perturbations and collisions with one another, ...

• ... represent localized lumps of energy, whose manifestation may be

constructive (e.g. signal transmission) or destructive (tsunami)

• ... bear various generic forms and names: pulses, kinks, holes, shocks,
double layers or potential dips (in plasmas), ...

• may either be non-periodic forms (e.g., pulses) or may possess a

quasi-periodic internal structure (e.g., oscillons, envelope pulses,

breathers)
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Solitary waves require a balance between:

– Dispersion, manifested via:

• wave spreading in Fourier space: different modes (k) travel at different

speeds:

(Source: http://www.scholarpedia.org)

• Chromatic dispersion effect in Optics (rainbow!)

• Curvature in the dispersion curve ω = ω(k), in solid state physics.

• The phase speed vph = ω
k = f(k) is a function of the wavenumber k.
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... and Nonlinearity , manifested as:

• Amplitude-dependence of the phase speed: larger amplitudes travel faster!

• This results in wave steepening, and eventually wave-breaking:

... a physical phenomenon well-know to seafarers (or surfers):
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Further tracers of nonlinearity include:

• Secondary harmonic generation

• No superposition principle: different normal (Fourier) modes

do not sum up

• Sidebands appear in the Fourier spectrum

• Energy localization
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Part A – KdV theory: Saga of an equation

Soliton history begins on a Scottish canal 180 years ago

when a young engineer named John Scott Russell was hired for a summer

job, to investigate how to improve the efficiency of barges in canals.

One day, he “was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat suddenly stopped;

the mass of water which it had put in motion ... rolled forward with great

velocity, assuming the form of a large solitary elevation, a rounded, smooth

and well-defined heap of water, which continued its course along the channel

without change of form or diminution of speed.

I followed it on horseback, and overtook it still rolling on at a rate of some eight

or nine miles an hour, preserving its original figure some thirty feet long and a

foot to a foot and a half in height. Its height gradually diminished, and after a

chase of one or two miles I lost it in the windings of the channel.” (JSR, 1834)
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Russell’s soliton

(Original values in feet.)
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Russell’s soliton recreated in 1995

(Credit: Heriot-Watt University, Edinburgh, Scotland.)
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On shallow water solitary waves ...

• 1834-1844: John Scott Russell experimentally observed his “great
solitary wave of translation” in 1834 and reported it during the 1844

Meeting of the British Association for the advancement of science.

• It was not immediately believed that Scott Russell’s solitary wave was of

importance. Theoretical descriptions had to wait until ...

• 1871: French mathematician Joseph Valentin Boussinesq proposed his

dispersive-nonlinear model for water surface waves, inspired by Russell’s

observation.
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• In 1876, Lord Rayleigh published his mathematical theory to support

Russell’s experimental observation.

• 1895: 20 years later, Dutch mathematician Diederik Johannes Korteweg
and his doctoral student Gustav de Vries

developed their theory for shallow water waves (the KdV theory ).

The Korteweg-de Vries (KdV) equation reads:

∂φ

∂t
+ aφ

∂φ

∂x
+ b

∂3φ

∂x3
= 0

where a is the nonlinearity coefficient, and b is the dispersion coefficient.
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More history: the FPU paradox

• 1955: Nobel prize winner Enrico Fermi, computer expert and physicist

John Pasta and mathematician Stan Ulam, along with their talented

student Mary Tsingou, in a classified scientific report with the title ‘‘Studies

of nonlinear problems” (Fermi et al., Los Alamos report, 1955), proposed a

chain model for anharmonic particle interactions in solids.

• Their aim was to use the power of the freshly developed MANIAC computer

at Los Alamos (USA), to investigate the relaxation of a particle chain

towards thermal equilibrium, under the effect of anharmonic interparticle

forces.
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• The FPU chain is a mechanical model that consists of identical atoms

exerting forces on their nearest neighbors, according to the second order

ordinary differential equations (ODEs):

where the inter-particle forces are anharmonic:

• The expectation was that energy launched into the system via an initial

mode would spread along all modes, according to the equipartition

theorem.
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The FPU-paradox

• The original expectation of Fermi, Pasta and Ulam was never confirmed!

• After an initial flow of energy towards other modes, the total energy was

observed to almost fully return to the initial mode (FPU recurrence).

[Figure from Thierry Dauxois and Stefano Ruffo, Scholarpedia, 3(8):5538 (2008)]
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Zabusky & Kruskal

• 1965: Zabusky and Kruskal explained the Fermi-Pasta-Ulam (FPU)
paradox by introducing the KdV equation in a “plasma” lattice:
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• Since 1965, this has led to explosion of applications, including many in

plasma and solid state physics

• Ingredients of nonlinear evolution equations like KdV are:

⋆ slow time variation

⋆ dispersion

⋆ nonlinearity

• Solutions in terms of solitons rely on extraordinary stability, ...

• ... constrained by infinite series of first integrals (constants of motion).

• KdV equation is an integrable dynamical system → conservation laws.

I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf

37

Plasmas – preliminaries

• Plasmas are large ensembles of charged particles

• Particles interact with one another (“Coulomb”/Debye interactions,

“collisions”)

• They interact with external electric/magnetic fields

• Many-body statistical effects (long-range correlations)

• Rigorous analytical approach:

N-body statistics ⇒ 1-body pdf ⇒ kinetic theory

• Reduced description: equations for “moments” of the pdf

⇒ Plasma-Fluid Theory
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Korteweg de Vries (KdV) theory for electrostatic (ES) waves

Taniuti and Wei [J. Phys. Soc. Jpn. 24, 941 (1968)] propose their reductive perturbation

technique, for long-wavelength ES acoustic modes in plasmas.

We review the basic qualitative aspects of this technique below.

• Dispersion relation (acoustic mode):

ω ≃ vphk +Ak3 + . . . ,

(where A is to be determined, for a given plasma composition), thus

kx− ωt ≃ k(x− vpht)−Ak
3t+ ... .

• Appropriate space/time stretching

ξ = ǫ1/2(x− V t) , τ = ǫ3/2t (V ∈ ℜ)

• n ≃ n0 + ǫn1 + ǫ2n2 + ...; u ≃ ǫu1 + ǫ2u2 + ...; φ ≃ ǫφ1 + ǫφ2 + ...
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Plasma fluid toy-model for electrostatic waves (1D)
Continuity (for plasma species s, e.g. ions):

∂ns

∂t
+
∂φ

∂x
(ns us) = 0

Mean velocity us equation:

∂us
∂t

+ us
∂us
∂x

= −
qs
ms

∂φ

∂x

The potential Φ obeys Poisson’s eq.:

∂2φ

∂x2
= −4π

∑

species s′

qs′ ns′ = 4π e (ne − Zi ni + ...)

– At a given dynamical scale for species s (= e, i, d), the state of other species

may be prescribed by simplifying assumptions;

– Typical paradigm: for ion-acoustic waves (s = i), ions are inertial, so

electrons are assumed at equilibrium (e.g. Maxwellian: ne ∼ eeφ/kBTe).
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• The method is rather tedious yet straigfhtforward; details are omitted here.

• Korteweg-de Vries (KdV) equation:

∂ψ

∂τ
+Aψ

∂ψ

∂ξ
+B

∂3ψ

∂ξ3
= 0 .

⋆ ψ = φ1 denotes a small (∼ ǫ≪ 1) correction to the electric potential,

⋆ Constraint: V = cs → propagation at (or slightly above) the sound

speed.

⋆ The coefficients A and B incorporate the physics of the particular

problem considered, as they contain the dependence on relevant plasma

parameters (lengthy expressions omitted here).

⋆ The dispersion coefficient B is positive;

⋆ The nonlinearity coefficient A determines the soliton polarity,

i.e., the sign (positive/negative) of the soliton pulse (→ next slide).
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• The soliton solution of the KdV equation above reads:

ψ = ψ0 sech
2

(

ξ − Uτ

L

)

which represents a propagating pulse.

Here:

⋆ U is the soliton velocity increment (total soliton speed = cs + ǫU )

⋆ ψ0 =
3U
A is the maximum soliton amplitude, and

⋆ L = 2
√

B/U is the soliton width.

• Width-amplitude relation: ψ0L
2 = 12B/A = constant , thus faster solitons

are taller and narrower :
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Solution in terms of φ + ambipolar field E = −∇φ and fluid variables n, u
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Solitons in action (1a)

[I. Kourakis, S. Sultana and M.A. Hellberg, Plasma Phys. Cont. Fusion, 54, 124001 (2012)]
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Solitons in action (1b): non-Maxwellian electron background

[I. Kourakis, S. Sultana and M.A. Hellberg, Plasma Phys. Cont. Fusion, 54, 124001 (2012)]
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Solitons in action (2): non-Maxwellian electron background (cont.)

[I. Kourakis, S. Sultana and M.A. Hellberg, Plasma Phys. Cont. Fusion, 54, 124001 (2012)]

I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf

47

Solitons in action (3): the influence of dust (defects)

[I. Kourakis, S. Sultana and M.A. Hellberg, Plasma Phys. Cont. Fusion, 54, 124001 (2012)]
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The Soliton paradigm is now used across all fields of Science

• Plasmas: KdV model for superacoustic acoustic electrostatic pulses;

• Solid state physics: longitudinal pulses in lattices; dislocations in crystals;

commensurability effects [Aubry, 1978];

• Biology : signal propagation across membranes, or along nerves; DNA

bubbles (denaturation) [Peyrard-Dauxois-Bishop, 1993; L.V. Yakushevich,

Nonlinear physics of DNA (Wiley-VCH, 2004)]
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• Oceanography, hydrodynamics: modeling of tsunami waves; modeling of

internal waves in the Andaman sea [Osborne, et al., Science 451 (1980) ]

• Chemistry : hydrogen bonding along macromolecules, proton conductivity;
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• Blood pressure waves in the human arteriae [S. Yomosa, J. Phys. Soc. Jpn. 56 506

(1987); J. F. Paquerot and S. Lambrakos, Phys. Rev. E 49, 3432 (1994)]

• Electric transmission lines [Scott 1970, Lonngren and Scott 1978, Remoissenet 1990]:
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Part B – Nonlinear localization, modulational instability,

envelope solitons: prerequisites

The amplitude of a harmonic wave may vary in space and time:

→

I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf
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Part B – Nonlinear localization, modulational instability,

envelope solitons: prerequisites

The amplitude of a harmonic wave may vary in space and time:

→
This modulation (due to nonlinearity) may be strong enough to lead to wave

collapse (modulational instability) or ...

→ ?
I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf
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Part B – Nonlinear localization, modulational instability,

envelope solitons: prerequisites

The amplitude of a harmonic wave may vary in space and time:

→
This modulation (due to nonlinearity) may be strong enough to lead to wave

collapse (modulational instability) or to the formation of envelope solitons:

→ ?
I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf
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Solitons in optical communications

• Kerr effect : in a medium with cubic nonlinearity, the index of refraction is

n ≃ n0(ω) + n2 |E|
2 .

• In 1973, Akira Hasegawa suggested that the nonlinear Kerr effect might

lead to energy localization in the form of envelope solutions of a nonlinear

Schrödinger (NLS) equation.

[Applied Phys. Lett. 23, 142 & 171 (1973)]
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• Hasegawa’s scheme relied on a simple idea: if the optical frequency ω
depends (not only on the wavenumber k, but also) on the (field) wave

amplitude |φ|, viz. ω = ω(k, |φ|2), then a Taylor expansion leads to:

ω ≃ ω0 +
∂ω

∂k

∣

∣

∣

∣

0

(k − k0) +
1

2

∂2ω

∂k2

∣

∣

∣

∣

0

(k − k0)
2 +

∂ω

∂|φ|2
(|φ|2 − |φ0|

2)

• Setting ω − ω0 → i∂/∂t and k − k0 → −∂/∂x, it is straightforward to find the

nonlinear Schrödinger (NLS) equation:

i
∂φ

∂t
+ P

∂2φ

∂x2
+Q |φ|2 φ = 0 .

• P : dispersion coefficient; Q: nonlinearity coefficient;

• Other mechanisms may be present: energy loss (dissipation), gain (via

resonance mechanisms, Raman effect, artificial amplification), noise,

turbulence, kinetic instabilities (+ Landau damping), etc...
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• Hasegawa’s idea would be realized experimentally a few years later:

... triumphantly leading to long-distance signal transmission in fibers,

which was meant to revolutionize telecommunications as known today!
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Optical pulses & modulational instability: summary

• Anomalous group-velocity dispersion (GVD) (self-focusing waveguide

nonlinearity), i.e., PQ > 0: a constant amplitude continuous wave is

unstable due to the modulational instability [see, e.g., Hasegawa (1989)],

• ... and breaks down into a sequence of localized pulses (or beams for the

spatial domain). These pulses are bright solitons.

• Normal GVD (or defocusing nonlinearity), i.e., PQ < 0: bright solitons do

not exist, instead initial pulses undergo enhanced dispersion- (or

diffraction-) induced broadening and chirping.

• In this case a constant amplitude wave is modulationally stable, so

localized envelope structures can appear only as holes, on a continuous

wave (cw) background. These pulses are dark solitons.

• Review papers and books: e.g., Hasegawa (1989), Agrawal (1989),

Hasegawa and Kodama (1995), Haus and Wong (1996), Kivshar (1998).
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Systematic derivation of the NLS equation

• Apart from the heuristic derivation discussed above, the NLS equation may

be derived via a rigorous multiple scales technique.

• The idea relies in defining space and time scales, to distinguish the fast

carrier wave from the slow envelope dynamics:

X0 = x, X1 = ǫ x, X2 = ǫ2 x, T0 = x, T1 = ǫ x, T2 = ǫ2 x,

• A lengthy calculation then leads to a solution in the form:

φ = φ0 +

∞
∑

n=1

ǫn
n
∑

m=−n

φ̂(m)
n (X1+, T1+) e

im(kx−ωt)

i.e.

φ ≃ φ0 + ǫ φ
(1)
1 ei(kx−ωt) + ǫ2 [φ

(0)
2 + φ

(1)
2 ei(kx−ωt) + φ

(2)
2 ei2(kx−ωt)] + ...
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• The method is generic, i.e., although first proposed for plasmas [M. Kako, J.

Phys. Soc. Jpn. 33, 1678 (1972)], it may be applied in any dynamical problem

supporting excitations in the form of modulated wavepackets, propagating

in a nonlinear dispersive medium.

• Plasma derivation for electrostatic modes: see, e.g., M. McKerr, I. Kourakis,

F. Haas, Plasma Phys. Cont. Fusion 56, 035007 (2014).

• The general result for the dynamics of the fundamental-harmonic amplitude

φ
(1)
1 = ψ bears the form of a Nonlinear Schrödinger–type Equation (NLSE) :

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0

where the (slow) variables are: ζ = ǫ(x− vgt) and τ = ǫ2 t;

• Group velocity: vg = dω
dk ; Dispersion coefficient : P = 1

2
d2ω
dk2

.

• Nonlinearity coefficient Q: ... (to be determined)

I. Kourakis, www.kourakis.eu conf/201405-UFRGS-oral.pdf



60

Modulational (in)stability analysis (continued)

• If PQ > 0: the amplitude ψ is unstable for k̃ <
√

2 Q
P |ψ1,0|.

• Maximum (instability) growth rate: σ = Q|ψ1,0|
2, occurs at k̃m <

√

Q
P |ψ1,0|

• Instability occurs in the “window”: 0 < k̃ <
√

2 Q
P |ψ1,0| .

• The wave may either “blow up”, or localize its energy towards the formation

of (envelope) solitons.
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Localized envelope excitations (solitons)

• The NLSE:

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+Q |ψ|2ψ = 0

accepts various solutions in the form: ψ = ρ eiΘ ;

• The total electric potential is then: φ ≈ ǫ ρ cos(kr− ωt+Θ);

• The amplitude ρ and phase correction Θ depend on ζ, τ .
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Localized envelope excitations (solitons)

• The NLSE accepts various solutions in the form: ψ = ρ eiΘ ;

the total electric potential is then: φ ≈ ǫ ρ cos(kr− ωt+Θ)

where the amplitude ρ and phase correction Θ depend on ζ, τ .

• Bright–type envelope soliton (pulse):

ρ = ρ0 sech

(

ζ − v τ

L

)

, Θ =
1

2P

[

v ζ − (Ω +
1

2
v2)τ

]

.

L =
√

2P
Q

1
ρ0

This is a

propagating

(and oscillating)

localized pulse:
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Propagation of a bright envelope soliton (pulse)
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Propagation of a bright envelope soliton (pulse)

Cf. electrostatic plasma wave data from satellite observations:

(from: [Ya. Alpert, Phys. Reports 339, 323 (2001)] )
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Bright envelope soliton in the discrete limit
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Bright envelope soliton in the discrete limit
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Bright envelope soliton in the discrete limit

Rem.: Time-dependent phase → breathing effect (at rest frame):
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Localized envelope excitations

• Dark–type envelope solution (hole soliton):

ρ = ±ρ1

[

1− sech2
(

ζ − vτ

L′

)]1/2

= ±ρ1 tanh

(

ζ − v τ

L′

)

,

Θ =
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2P

[

v ζ −

(

1

2
v2 − 2PQρ21

)

τ

]

L′ =

√

2
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∣

∣

∣
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Q
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∣

∣

∣

1

ρ1

This is a

propagating

localized hole

(zero density void):
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Localized envelope excitations

• Grey–type envelope solution (void soliton):

ρ = ±ρ2

[

1− a2 sech2
(

ζ − v τ

L′′

)]1/2

Θ = ...

L′′ =

√

2

∣

∣
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This is a

propagating

(non zero-density)

void:
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Envelope solitons in action (1): anomalous vs. normal dispersion

Case PQ > 0 (“Anomalous dispersion”): stable bright (left plot)/ unstable dark (right plot) envelopes:

Case PQ < 0 (“Normal dispersion”): unstable bright (left plot) / stable dark (right plot) envelopes:

[I. Kourakis, S. Sultana and M.A. Hellberg, Plasma Phys. Cont. Fusion, 54, 124001 (2012)]
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Envelope solitons in action (2): anomalous vs. normal dispersion

Bright envelope solitons on the space-time plane: stable vs unstable:

Dark-type envelope solitons on the space-time plane: stable vs unstable:

[I. Kourakis, S. Sultana and M.A. Hellberg, Plasma Phys. Cont. Fusion, 54, 124001 (2012)]
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Epilogue: Bose-Einstein Condensates (BECs)

• BECs: first predicted by Satyendra Nath Bose and Albert Einstein in

1924-25; realised in 1995 [Anderson et al, 1995; Davis et al, 1995; Bradley

et al, 1997]; awarded the Nobel prize in Physics in 2001.

• The time-dependent GrossPitaevskii eq. describes the evolution of a BEC:

where Ψ represents a single particle wave function.

• The GPE possesses supports both bright and dark envelope solitons, as

shown theoretically and confirmed experimentally: an excellent testbed for

NLS theory.

• Vast literature available; e.g. [Pitaevskii & Stringari (2003), Bose - Einstein Condensation,

Oxford: Clarendon Press].
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Concluding remarks

• Solitons & Nonlinear Physics – a unifying concept across disciplines.

• The main two pillars of soliton theory, the Korteweg - de Vries equation and

the nonlinear Schrödinger equation still provide a plethora of works, and

may have a lot to give.

• Multidimensional extensions, including the Zakharov-Kuznetsov equation,

the Kadomtsev-Petviashvili equation, and the Davey-Stewartson system,

still remain partly unexplored (stability, integrability properties).

• Areas of relevance span: plasma physics, materials, condensed matter

physics, optics, oceanography, biology, chemistry, and others.

• Frontier areas include: metamaterials / left-handed materials (negative

refraction media), nonlinear optics, petawatt scale ultra-short laser

plasma/matter interactions, Bose-Einstein condensation, and more ...
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