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I. hTIWDCCTIO)l 

The transport of protons in hydrogen-bonded systems is a long standing problem 
which has not yet obtained a satisfactorily theoretical description. Although this 
problem 'was examined first for ice, it is relemnt in many systems and in particular in 
biology for the t,'ansport along proteins or for proton conductance across membranes, 
an essential process in cell life. This broad relevance makes the study of proton 
conduction very appealing. Since the original work of Bernal and Fowler on ice

l
, 

the idea thut the transport occurs through chains of hydrogen bonds has been well 
~ 

accepted. Such ;'proton wires" were invoked by Kagle and 110rowitz- for proton 

transport across membranes proteins and more recently across lipid bilayers 
3

• In this 
report, we assume the existence of such an hydrogen-bonded chain and discuss its 
consequences on the dynamics of the charge carriers. \Ve show that this assumption 
leads naturally to the idea of soliton transport and we put a special emphasis on 
the role of the coupling bet\\'een the protons and heavy ions motions. The model is 
presented in section II. In section III we show how the coupling affects strongly the 
dynamics of the charge carriers and in section IV we discuss the role it plays in the 
thermal generation of carriers. The work presented in section III has been performed 

in 19S6 and 87 with St Pnevmatikos and N. Flytzanis 4 and was then completed in 

collaboration with D. Hochstrasser and H. Bi.ittner
5

. Therefore the results presented 
in this part are not new but we think that they are appropriate in the context of this 
multidisciplinary workshop because they pro\'ide a rather complete (and tractable) 
exar.lple of the soliton pic;ure for proton conduction. Section rv discusses the thermal 
generation of the charge carriers \\·hen the coupling between the protons and heavy 
ions dynamics is taken into account. The results presented in this part are very recent 
and will deserve further analysis but they already show that the coupling can assist 
the formation of the charge carriers. 

Since the results presented here consider only the ionic defects along a pre-existing 
hydrogen bonded chain they give a partial view of the proton transport mechanism. 
However, since the coupling between the motion of the carriers and the dynamics of 
the underlying lattice generates a very characteristic response, we hope that these 
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II. THE ANTONClIENKO-DAVYDOV-ZOLOTARIL"K MODEL 

Since the original work of Bernal and Fowler l
, it is now accepted that, in ice 

as well as in water, protons are t~ansferred by jumps from one water molecule to 
another along hydrogen bonds (fig. 1 a). According to this mechanism the charge 
carriers are H30+ and OH- ionic defects. However the motion of these defects is 
not sufficient to explain a permanent proton conductivity since, after one defect as 
passed, the chain is left in a state that cannot C3.-7)' charge in the same di~ection 
agam. 

Figure 1: (a) Schematic picture of proton t~ansport according to 
the Bernal Fowler mechanism. The figu~e prese!lts the case of an H30+ 
ionic defect. (b) Motion of a Bjerrum defect across an hydrogen bonded 
chain. The defect restores the chain in a state that can again carry 
charge according to the Bernal Fowler mechanism. 

The chain has to be restored to its original state by another type of defect which 
rotates the water molecules, the so-called Bjerrum defects

6 
(fig 1 b). In 1978 Na-

~ 

gle and Morowitz· extended the ideas of Bernal and Fowler and Bjen-um to mem-
brane proteins, showing the great biological importance of proton transport across 
a::t hydrogen-bonded chain. However, in their model, the dynamics of the charge car­
riers was not described quantitatively. The first model describing this dynamics was 

proposed by Antonchenko-Davydov-Zolotariuk 7. It combined a well k::town soliton 

model, the ¢4 modelS, and the dyn=ics of the heavy ior:s. This ADZ model only 
describes the H30+ and OH- ionic defects. Other models were introduced later to 
combine the ionic and Bjerrum defects in a single description 

9
, or to int:-oduce other 

degrees of fr~edom of the heavy ions not included in the original ADZ models,lO. 
However, although this is not generally mentio=ed, these extended models are de­
pendent on the actual crystal geometry while the ADZ model can be introduced by 
general arguments independent of the geometry of the chain. IvIoreover the ADZ 
model is easily tractable a::tulvticallv and desc:-ibes the esse::ttial features of the hv-. .... . .. 
drogen bonded chain. This is \\'by, m this report, we have chosen to restrict our 
discussion to this particular model. 
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Figure 2: Picture of the Antonchenko-Davydov-Zolotariuk model 
showing the chain with the proton potentials, and a example of the 
solution of the equations of motion_ 

A schematic drawing of the ADZ mode! is shown in fig. 2. I t consists of a chain of 
protons and heavy ions (which are henceforth called "oxygens" although they can be 
OH- 'or more complicated entities depending on the system)_ A classical description 
of the dynamics of this chain could in principle be derived from the hypersurface 
of potential energy as it can be obtained from ab-initio calculations_ However, this 
potential energy depends on all the variables in the system and cannot be used as 
such to obtain a model which is analytically tractable. The main idea of all the 
soliton models is to select in the potential energy the part which is relevant for pro­
ton transport and split it into several components relu.tive to the proton sublattice, 
the Q),:ygen sublattice, and the coupling between the two sublattices. The different 
terms can be justified if we consider a simple prototype hydrogen-bonded system, the 
proton-bound water dimer ll (H20 H --. OH2)+_ This system can be characterized 
by two parameters, the distance X between the oxygens and the position u of the 
bonding proton (note that, by choosing only these parameters which are the most 
relevant parameters for the bonding-proton dynamics, we have already greatly sim­
plified the expression of the potential energy of the system). Ab-initio calculations 
show that, when X has its equilibrium value, there are two energetically degenerate 
positions for the bonding-proton, close to one oxygen or close to the other. If X is 
maintained fixed, the transfer of the proton between the two sites requires to over­
come a potential ener!!,-y barrier between the sites so that the potential energy for 
the proton has the shape of a double well. But if X is allowed to vary, the proton 
transfer is accompanied by a reduction in the oxygens distance which lowers signifi­
cantly the potential energy barrier_ In some compounds the barrier can even .vanish 
complete!y12. This effect is described in the ADZ model by \\Titting the potential 
energy of the proton as the sum of a double well potential depending only on the 
proton position u, and an interaction term that depends both on u and the distance 

• of the two adjacent oxygens. The model must also take into account the existence 
of a stable equilibrium distance a between neighboring oxygens by adding a term 
in the potential energ-y which, for silllplicit~-. is chosen as a harmonic potential for 
the variable p = a - X _ lvIoreover the hypersurface of potential energy couples any 
variable in the chain to any other. It is reasonable to assume that the shortest inter-
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actions are the dominant ones. The interactions between adjacent atoms are already 
described by the terms mentionned above. The ADZ model considers in addition 
the interactions between neighboring protons and between neighboring oxygen pairs. 
The hamiltonian of the chain is written as 

H = Hp + Ho + Hint' (1 ) 

The proton part is 

( )

2 1 dUn _ 1, 2 
Hp = "" -171 - + [,(Un ) + -mWj(U n+l - un) 

~ 2 dt 2 
JI , 

where the index n designates the unit cells and 171 is the proton mass. The first term 
is the kinetic energy term, U( un) is the double well potential obtained for fixed X in 
the ab-inito calculations. It is written as 

- ' , / ')' V(un) = fo (l - u;, Uo - , (2) 

and the last term represents the harmonic coupling with characteristic frequency ""'I 

between neighboring proton. In the double well expression U(u n ), fO is the height 
of the potential barrier between the two equilibrium sites situated at the positions 
u = ±uo. 

The oxygen part is 

(3) 

],,1 is the oxygen mass, no is the frequency of the optical mode corresponding to 
the oscillations of the distance between adjacent oxygens and n 1 characterizes the 
coupling between neighboring oxygen pairs. 

The interaction part is 

"" ' , Hint = ~ XPn(tl~ - uii) , 
n 

(4) 

where X measures the strength of the coupling between the proton and h~'drogen 
sublattices. The expression of the interaction potential in the ADZ model is in­
teresting because it is both physically relentnt and mathematically conyenient. It 
describes correctly the interaction because if Pn increases (i. e. the distance bctween 
two adjacent oxygens decreases), the a.ddition of the interaction potential to F(u n ) 

generates a double well potential with a lower barrier and closer minima. Moreoyer, 
the specific form of Hin, gives equat.ions of motions which, in some cases, reduce to 
the well known 4>4 model and are thus soh'll.ble. 

The comparison between t.he results of the ab-initio calculations and the ADZ 
model shows that this model prcwides a rather natural description of the hydrogen­
bonded chain. It includes indeed some approximations since the hypersudace of 
potential energy has been severely simplified and because some degrees of freedom 
of the oxygens are ignored since an oxygen pair is described by a single \a.riable Pn. 
The model does not include an overall h 'ansbtion of the pair, i.e. the acous tic modes 
of the oxygen sublattice. Dut, as the main change in the distance between adjacent 
oxygens is caused by a local optical motion, the approximation is reasonable. 



III. MOBILITY OF THE CHARGE CARRIERS IN THE ADZ MODEL 

The mobility of the carriers can be determined by investigating the dynamics 
of the ADZ model. "Ve show in this section that its equations of motion have two 
solitonlike solutions which correspond to the H30+ and OH- ionic defects and we 
discuss the dynamics of these solutions. 

The hamiltonian (1) generates a set of coupled differential equations for the Un 

and pn that cannot be solved analytically, but, if the nearest neighbor couplings be­
tween protons and between oxygen pairs are strong enough, one can use a continuum 
approximation which replaces a set of functions un(t) by the two-variable function 
u(x, t), and similarly for the Pn(t) which are replaced by p(x, t). Within this approx­
imation, the original set of coupled differential equations is replaced by two coupled 
PDE's 

, 4eo ( u
2

) 2X Utt - coux.r - --, U 1 -, + -pu = 0 , 
muo U o m 

(5) 

2 ,f'\2 + X (2 2) 0 Ptt - voPu .... "oP Ai U - Uo = , (6) 

where x = na is the continuous space variable, co = al..·l is the sound speed in the 
proton sublattice, and vo = anI is a parameter which characterizes the dispersion 
of the oxygens optical mode. A charge carrier moving at speed v is described by a 
permanent profile solution, i.e. a solution which depends only on ~ = (x - vt)la. The 
equations of motion are therefore reduced to 

1 " 4eo ( u
2

) 2X ,(co-v-)U{<+--,u 1-, --'-p'u=O, 
a- 'mu- u- m , 00 

(7) 

1..,? ? x..,? 
,(v- - t·o)P« + nop + 'l(u- - uo) = O. a- ...... ~l' 

(8) 

Analytical solutions of this set of coupled equations are only known in some particular 
cases. If the coupling between the two sublattices vanishes (X = 0), Eq. (7) reduces 
to the </>4 equation 8 which has kinklike permanent profile solutions, while equation 
(8) is simply linear. In the presence of the coupling, an exact analytical solution can 
only be obtained for the part.icular speed v = Vo because, in this case, Eq. (8) gives 
an e).:pression of p as a function of u. Introducing this expression in Eq. (7), we get 

( 
0 4) ( ') 1 0 0 4 X-u n u-

,(co - v-)u« + --" eo - " U 1 -, = 0 , 
a- "muii 2niiM U o 

(9) 

which is again the standard 1/>4 equation with a renormalized barrier e between the 
two proton sites 

(10) 

;' The simplicity of this equation is due to the special form chosen for the interaction 
• ", 

i . .-. 
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term in the hamiltonian. Equation (9) has kinklike solutions 

u = ±uotanh(UL), (11) 

where L measures the kink width and is given by 

1 2 ( X2u~ ) 1 
L2 = mw2u2 EO - ?n2111 1 _ v2/c2 . 

1 0 - 0 0 

(12) 

The corresponding solution in the oxygen sublattice has a bell shape 
• 

P = posech2(UL) with PO = Xu~/Mn~. (13) 

This solution is shown in fig. 2 with the plus sign for u. The figure shows that the kink 
in u generates a local reduction in the proton density, which amounts to creating a 
negatively charged carrier in the chain. This solution corresponds to the OH- defect 
in the Bernal Fowler picture. The other solution with a minus sign in u increases the 
local proton densi ty and it corresponds to the H30+ defect. Both are accompanied 
by a local reduction in the dista.nce between adjacent oxygens which is associated 
to a decrease in the effective barrier for the protons. The kink solutions of the ¢4 
model are not solitons in the strict sense because they don' t survive collisions with 
simply a phase shift. However they are stable soli tonlike structures which propagate 
with a constant shape and speed. Therefore this particular solution for v = vo 
suggests that the coupling between the two sublattices assists the proton transport 
because it makes the jump from one position to the other easier by lowering locally 
the potential energy barrier. However the investigation of the dynamics of the model 
for other velocities shows that this is not always the case. 

For vivo, an exact analytical solution cannot be obtained and we have to rely 
on numerical methods. A scheme using an effective hamiltonian has been recently 
designed to find permanent profile solutions moving at any speed 10, but we can also 
take advantage of the exceptional stability of the solitonlike solutions we are looking 
for to use the system itself as an equation solver. The idea is to run a molecular 
dynamics simulation in which a static solution obtained by energy minimization is 
forced to move at the desired speed by an external force. A small damping is added 
to absorb the radiations emitted while the static solution is accelerated. '~Then a 
steady state is achieved, the ext,emal force and damping are gradually removed. This 
procedure shows that the two velocity domains v ~ Vo and v > Vo are fundamentally 
different. 

(i) for v ~ vo, a permanent profile solution exists and when the external force 
and damping are removed, it propa.gates freely at constant speed. An approximate 
analytical description of this solution can be derived because the shape of the kink 
in the proton sublattice is only weakly modified by the coupling with the oxygens. 
Therefore it is well approximated by the solution of Eq. (9) with v < vo although 
this equation does not trea.t Eq. (8) exactly in this case. Then the displacements in 
the oxygen sublattice are obtained by solving Eq. (8) with a known u solution, i.e. 
by treating the oxygen motions as if they were forced by a given proton kink. The 
amplitude of the oxygen pulse obtained by this approach is in good agreement with 
the numerical results . 
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(ii) for v > vo, there are no permanent profile solutions. The numerical simu­
lations show that, as the kink in the proton sublattice propagates, instead of being 
accompanied by a localized solution in the oxygen sublattice, it radiates waves in 
this sublattice. The same approximate analytical treatment as for v ::s Vo shows that 
Eq. (8) forced by a kink in u moving at velocity v > Vo has no localized solution. 
The radiation in the oxygen sublattice corresponds to a transfer of energy from the 
proton kink so that a proton kink launched at a speed v > vo slows down until its 
speed reaches Vo where the radiation stops. 
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Figure 3: Velocity of the proton kink driven by an external field 
as a function of the field strength for several values of the damping 
coeffiecient r. The horizontal dotted line indicates the velocity vo. 
Note the hysteresis phenomena for r = 0.05 1014 s-l. 

Therefore, whereas for v ::s Vo the coupling between the two sublattices is assisting 
the motion of the charge carriers, for v > vo it has an opposite effect. This generates 
a strong nonlinearity in the mobility of the carriers when they are submitted to an 
external field. We have determined this mobility by carrying numerical simulations in 
the presence of an external fielcl. When it drives the ionic defect, the field feeds energy 

• in the system. In a three-dimensional system part of this energy is distributed among 
many degrees of freedom which are not included in the one-dimensional ADZ model. 
This energy transfer has been approximately modelled by adding a phenomenological 
damping term in the equations of motion. Figure 3 shows the equilibrium velocity 
v f of the proton kink as a function of the applied field F for different values of the 
damping coefficient r. 
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Without damping (r = 0) there is all abrupt discontinuity in vI when F reaches 
a critical value Fe. For F < Fe, the velocity of the solitary wave is always larger 
than vo and increases very slowly with F (plateau in fig. 3). For F > Fe, vI jumps 
to a value close to Co where it is limited by discreteness effects which cause radiation 
in the proton sublattice 13. In the presence of damping this abrupt discontinuity is 
smoothed out but, for intermediate damping, some hysteresis is found in the charge 
carrier mobility when F is increased to a value larger than the critical \'Rlue and then 
decreased. Consequently the numerical results show a very strong nonlinear response 
of the charge carriers to an external field. This behavior is due to the couplin9 
between the two sublattices and can be understood if one considers the balance 
between the energy transmitted to the carriers by the external field and the energy 
they radiate in the oxygen sublattice when their speed exceeds Vo 4. In the absence of 
damping, the proton kink does not lose any energy as long as its velocity is smaller 
than Vo and thus any small F drives it to a velocity above vo where the radiation 
can compensate the energy input due to F. But an analytical calculation shows that 
the radiated energ;y exhibits a maximum for a speed slightly higher than Vo. At very 
high speed, the heavy oxygens atoms cannot follow the fast proton motion and the 
energy transferred to the oxygens decreases. The existence of this maximum in the 
radiated energy explains the existence of a critical field Fe. For F > Fe, the radiation 
cannot balance the energy input, hence the jump to very high carrier speed. In the 
presence of damping, the balance has to take into account the energy loss due to 
damping. The plateau is reduced and there is now a limited equilibrium speed when 
F exceeds Fe. A complete analysis shows that the hysteresis observed numerically 
can be understood within the same framework 4. Consequently the mobility of the 
charge carriers in the ADZ model is controlled by the coupling between the charge 
carriers and the host lattice which results in a strongly nonlinear response. 

IV. THERMAL GENERATION OF CHARGE CARRIERS 

The analysis of conductivity experiments in hydrogen-bonded systems generally 
assume that the number of ionic defects is fixed. At low temperature some of them 
are trapped by defects or inhomogeneities and they are gradually released when 
temperature increases. One may ru;k however if the thermal creation of ionic defects 
is possible. This section examin<"s this question. As for the mobility of the carriers, 
we show that the coupling between t.he proton and the oxygen sub lattice has a strong 
influence. 

The first step to determine whether thermal creation is possible is to compute the 
energy of an ionic defect. This is the energy of the solitonlike solutions determined 
previously and, for v = Vo it is given by 

8 ~ Co 
E(vo) = 3 I? V ?? uov'f(1 + C) , 

v.t. 1 _ v"le" a o 0 

(14) 

with 

(15) 

The coupling between the two sublattices appears III two places III this formula. 
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Table 1. Energies E of ionic defects for different parameter sets. 

fO uo WI no vo/co X f C E 

2.0 eV 1A 2.21 0.184 0.192 0.1 1.99 eV 4 10- 3 16.1 eV 
0.1 eV 0.8 A 1.0 0.570 0.1 0.1 0.996 eV 210-5 0.48eV 
0.18 eV 0.8 A 1.0 0.570 0.1 1.5 0.987 eV 610-3 0.48eV 

First it shows up in the term Vf because, in the absence of coupling one would 
get fO instead of f. Since the effec tive barrier f is lowered by the interaction as 
indicated by Eq. (10), the coupling contributes to reduce the creation energy of a 
defect. Second the coupling is responsible for the correction term C in Eq. (14). 
This term represents the energy which exists in the oxygen sublattice due to the 
local distorsion that accompanies the proton kink. This extra energy contributes to 
increa3e the creation energy of a defect. Table I lists the energy of an ionic defect for 
three different parameter sets. 

The choice of appropriate parameters for the model is delicate because some of 
them are not directly accessible to experiments. The first set was introduced by 
Spatschek, Laedke and Zolotariuk H and used later by ourselves 4 and more recently 

by Nylund and Tsironis l5 for a comparison between model results and experiments. 
This set gives a defect energy which is extremely high (16 eV) end is certainly not 
correct. T he two other sets have been chosen in order to give equal energies for the 
defects with weak ex = 0.1) or strong (X = 1.5) coupling between the sublattices. The 
values of fO have been chosen to be consistent with the ab-initio results 11 and also with 
a very extensive analysis of a large number of hydrogen bonded compounds performed 
by Sokolov et al. 12. The value of WI has been chosen so that the characteristic width of 
a defect, i. e. its spatial extent L, is if the ortier of two lattice spacings. The frequency 
no of the oxygens optical mode has been set to 300 cm- I . The parameter Vo is the 
most difficult to chose because it is related to the dispersion of this optical mode 
which is not accessible by a spectroscopy experiment. vVe have chosen to impose 
vo/co = 0.1 but it would be interesting to refine this value either by comparison with 
the results of ab-initio calculations on a system involving at least two oxygen pairs 
so that the coupling between them can be obtained, or by using dispersion curves 
determined by neutron diffraction. The coupling constant X is also a parameter which 
is not well known, which is why we have considered two cases, X = 0.1 and X = 1.5 
corresponding respectively to weak and strong coupling. In the weak coupling case, 
table I shows that f is very close to fO and the correction C is very small. In the 
strong coupling case f ~ 0.5 fO, while the correction term remains rather small. The 
global effect is a significant reduction of the energy of the defect. 

However, even if the model parameters are not perfectly known, the energy of 
an ionic defect is of the order of 0.5 eV so that its thermal creation around room 
temperature is extremely unlikely un1etis some particular mechanism can intervene 
to localize thermal energy in the cha.in. In a nonlinear system like the hydrogen­
bonded chain such a mechanism exists; it is the mod'ulational in3tability of a plane 
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wave. Before attempting to study it for the coupled lattices of the ADZ model, let 
us discuss the idea on a simple case with only the proton sublattice. \lITe start from 
the equation of motion (5) with X = 0, i.e. 

( ?) ? 4Eo U' 
Utt - ciiuu - --? U 1 - -:; = ° , 

muo uii 
(16) 

In order to study the build-up of large amplitude solutions we e:>.:pand around the 
equilibrium position Uo using a multiple scale expansion which goes beyond a simple 
linear e).:pansion 

• 
U = uo + t:uI(To,TI,T~, ... ,XO,XI,X~, ... ) + t:2u~(To,TI,T2"" ,XO,XI ,X2, . .. ), 

(17) 
with To = t; TI = t:t is a slow time which will describe the slow eyolution of the 
solution, T~ = ,2t, and in a similar manner Xo = x, XI = ~x, ' etc. At order, one 
gets an evolution equation for U I which giycs 

A( V "') i (h-wt) + CC tl}=·"'1_'\.),.J.2 e , (IS) 

where wand k are related by the linear dispersion relation of the lattice. In the small 
amplitude limit, UI would simply correspond to the phonon modes of the lattice. 
But if nonlinearity is taken into account, the higher order terms gh'e a nonlinear 
5chrodinger equation (KL5 equation) for A., 

. 8A a~ A QI I' A 

t aTz + P ax; + A - -'1 = ° , (19) 

with P = (C5 - t,;)/2:..·, Vg = c~k/w, and Q = 24EO/":U~ This equation has 
an exact space-independent solution A = Ao exp(iQA6Tz) which corresponds to a 
plane wave solution in UI. However this solution in which the energy is evenly dis­
tributed over the chain is unstable. Looking for a perturbed solution .4 = [Ao + 
AI(XI , t2)] exp(iQ_45Tz), one finds that, if P Q > 0, which is the case for the equation 
that we consider here, the perturbation tends to grow and generates a spontaneous 
modulation of the wave. A more complete analysis shows that the plane waye tends 
to break-up into solitary wayes, or breather solutions of the KL5 equation, in which 
the energy is concentrated. The same mechanism is also true for the thermal fluctu­
ations. \~'hen their amplitude is sufficient to excite the nonlinearities in the s~'stem, 
an energy localization occurs and promotes the formation of kink-antikink pairs. 

This mechanism is well known for an equation like (16), but the case of the ADZ 
model of the h~'drogen-bonded chain is more complicated because we must consider 
the two coupled equations (5) and (6). Kevertheless the same energy localization 
mechanism exists and it is even made more efficient by the coupling between the two 
sublattices 16. A multiple scale expansion performed on the \"ariables U and P yields 
at first order 

UI = A.+(XI ,T2)e i(",+t-h) + A_(){I ,Tz)ei(",-t-h) + CC 

PI = B+(XI , T~ jti(",+t-kx) + B_(XI ' Tz)ei(",-t-h) + CC 
(20) 

(21) 

where the two sets of terms arise from the existence of two branches in the dispersion 
curve of the diatomic chain, with frequencies w+ and w_. Each sublattice sees its 
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own dispersion curve and a "shadow" of the dispersion curve of the other sublattice 

due to the coupling. For instance. the component of amplitude A_ in the proton 
sublattice is the "shadow" of the component B_ in the o~ .. ygen sublattice. Therefore 
A_ is related to B_ and similarly B+ can be expressed as a function of A+ so that 

the only independent factors are A+ and B_. They are solutions of a set of coupled 
NLS equations 

(22) 

(23) 

The coefficients Pl. P2, Qij have lengthy expressions in terms of the model parameters 

but they can be ob tained analyticall/
6

. Similar systems of coupled NLS equations 

have been obtained previously for birefringent fibers 17 or coupled lasers beams in 

aplasma 18,19. One general feature of these coupled NLS is that modulati~nal insta­
bility is more likely to occur, and the growth rate of the ins tability is larger than for a 
single NLS. This is also true for the equations derived abo\'e for the hydrogen-bonded 
chain. Instead of the single condition P Q > 0 for a single 1\LS, there are now several 
sufficient ins tability conditions for the exact plane wave solution 

The first one 

A+ = Ao exp[i(Qll.4~T2 + QI2B5T2)] 

B_ = Bo exp[i( Q21 A·5T2 + Q22B5T2)] . 

(24) 

(25) 

(26) 

is simply the generalization of the instabili ty condition of a single 1\LS equation. 
The others have complicated expression. but the net result is that, with the model 
parameters listed in table I, the inst.ability is always present. 

Figure 4 shows the result of a IlUlllerical simulation performed with the second 
parameter set of table I (weak coupling case). In this simulation using molecular 
dynamics at constrained temperature. a chain containing 256 protons is slowly heated. 

At low temperature the protons were all on the same side of the double well (un ~ 
+uo) so that the chain had no ionic defect. The black areas which corresponds to 
domains in which the protons have moved to the opposi te position -uo show that 
ionic defects have been formed at high temperature. 

The tendency for energy localiza tion appears clearly because the large amplitude 
motions start in a small region of the chain. In this region one can notice that the 
formation of a large domain in which the protons have switched well is preceeded by a 
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Figure 4: Thermal gcnc!'ation of a pair of ionic defects in the ADZ 
model. The figure shows the posi t ions of the protons in the chain wi th 
a gray scale. Light grey corresponds to protons around the position 
+uo and black c.orrespollus to protons around the position -uo. The 
chain extends along the vertical axis. The temperature extends along 
the horizontal axis. In tl,is experi:llent the system was heated with a 
linear temperat.ure ramp so tha.t the horizontal axis is also proportional 
to time. An iOllic. defect appears on this figu!'e as an interface between 
a clear and a dark region. 

• 

sequence of alternating bakk and white regions which grow bigger and bigger. These 
dots correspond to large amplitude oscillations of the proto:lS in a small domain of 
the chain, A few protons 1ll0\'e toward -Uo gi\'ing rise to a dark dot, then corne back 
to their original position then mO\'e toward -uo again, T his type of motion is typical 
of a breather mode of the 1\LS equation. As the temperature is raised, the ampli­
tude of the breather increases while its frequency decreases until it freezes, giving 
rise to a kink-antikink pair. This type of oscillatory precursor motions before a pair 
of ionic defects are formed shows that the 1\LS description, hence the mod ulational 
instability mechanism, is the appropriate description of the thermal generation of 
ionic defects in the hydrogen bonded chain. However, in spi te of the enhancement 
of the energy localization due to the coupling between the proton and ox~'gen sub­
lattices, the thermal generation of the carriers still requires a high temperature, In 
the simulation shown in fig. 4, the temperature \'aries f:'om 500!\: to 15001\ and the 
formation of a pair of ionic defects is observed around 1200K. Since the energy of the 
two defects is 0.96 eV (corresponding to T=11 ,1301\ if we set hBT = 0.96 eV) the 
energy localizat.ion is responsible a substantial decrease in the generation tempera­
ture. Nevertheless, in spite of the enhancement due to the coupling between the two 
sublattices, the thermal generation of ionic defects around room temperature can be 
expected to be a rare event. 

V. CO]'\CLUSJO]'\ 

The analysis of the different t.erms of the potential energy of the ADZ model has 
shown that they prO\'id(' an approximate d('sCl'iption of the hypersurface of potential 
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energy of an hydrogen-bonded chain. TherefOl'e, if one accepts the idea that protons 
are transported along such a chain, the model leads naturally to solitonlike solutions. 
These solutions provide a general description of the two types of ionic defects: very 
narrow solutions correspond to independent proton jumps while broader ones describe 
a collective proton transport. Only the broad solutions can be expected to have 
solitonlike properties because, if the kink width is only of the order of the lattice 
spacing, discreteness effects trap it 13. This soliton picture could also be obtained 
with a simpler model assuming that the heavy ions are fixed. However ab-initio 
calculations or the analysis of vibrational proton frequencies in a large number of 
hydrogen bonded systems 12 show that the proton motion is accompanied by a rather 
large dis tors ion of the heavy ion sublattice. This distorsion is included in the ADZ 
model and we have shown that it has a very stong influence, both on the mobility and 
on the thermal generation of ionic charge carriers. Due to energy exchanges between 
the protons and heavy ions a nonlinear mobility is found. This characteristic behavior 
could provide an experimental test of the validity of the model. We have also shown 
that the dis torsion of the heavy ion sublattice enhances the modulational instability 
that can localize the energy and promote the thermal generation of ionic defects. 
However, even with this enhancement, the thermal generation of defects at room 
temperature remains a rare event. 

The ADZ model is still a fairly simple description of a hydrogen bonded system 
and it can be improved to describe the Djerrum defects 9

, include acoustic modes for 

the oxygens 5 or even include anharmonic interaction between the protons to describe 
the difference in energy between the H30+ and OH_ ions. However, the most urgent 
research to carry in this domain is the determination of appropriate parameters for 
the model. They are essential to allow a comparison between theory and experiments 
and to decide whether the soliton picture is closer to reality than independent proton 
jumps. Good model parameters could probably be provided by ab-initio calculations 
on systems big enough to include the dynamics of the heavy ions and to test the 
degree of cooperativity in the proton motions. 
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