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Abstract

The derivation of a kinetic equation for a charged test-particle (t.p.) weakly interacting with

an electrostatic plasma in thermal equilibrium, subject to a uniform external magnetic field,

is considered. From the generalized master equation a Fokker-Planck-type equation follows

as a “markovian” approximation. Such an equation does not preserve the positivity of the

distribution function. Applying techniques developed in the theory of open systems, a correct

Fokker-Planck equation is derived. Explicit expressions for the diffusion and drift coefficients,

depending on the magnetic field, are obtained.

1. Introduction

Methods from non-equilibrium statistical mechanics have often been used in the past to de-

rive a kinetic equation for magnetized plasma. The starting point of such studies has been

either the BBGKY hierarchy of equations for reduced distribution functions (rdf) or formal

projection-operator methods. In a generic manner, both approaches rely on a (‘non-markovian’)

generalized master equation (GME). A Fokker-Planck-type equation is derived from the GME

as a “markovian” approximation. Such an equation does not preserve the positivity of the

distribution function f(x,v; t). In this work, this problem is exposed in the simple case of a

uniform external field, and an alternative approach is considered.

We consider a test-particle (t.p.) Σ (charge eΣ = e, mass mΣ = m) surrounded by (and

weakly coupled to) a homogeneous background plasma (N particles, of species αj) (the reservoir

‘R’). The whole system is subject to a uniform external magnetic field.

The equations of motion for the test-particle are:

ẋ = v ; v̇ =
1

m
[
e

c
(v ×B) + λFint(x,v; XR; t)] (1)



Fint(x,v; XR; t), which is due to interactions between the t.p. and the reservoir particles

surrounding it may be viewed as a ‘stochastic’ forces, given that the reservoir will be assumed

to be in statistical equilibrium state. As obvious, X = (x,v) ≡ (xΣ,vΣ) and XR ≡ {Xj} =

{(xj,vj)}, (j = 1, 2, . . . , N) denote the coordinates of the test- (Σ-) and reservoir (‘R’-) particles

respectively. The zeroth-order (in λ) problem of motion yields the well-known (helicoidal)

solution.

The test-particle’s rdf f(x,v; t) = (I, ρ)R ≡
∫

ΓR
dXR ρ({X,XR}; t) is defined through

a projection:

IE ρ = σR f

(note that IE = IE2) where ρ = ρ(X,XR) (σ = σ(XR)) denotes the total (reservoir) phase-

space distribution function, which is normalized to unity:
∫
dX ρ = 1 (

∫
dXR σ = 1). Let us

point out that Fint thus comes out to be described by a stationary Gaussian process, determined

by a vanishing mean-value. By introducing the Fourier transformation of the interaction potential

V (r), the force correlation matrix takes an explicit form in terms of the solution of the dynamical

problem; in principle, that is, the external field explicitly enters the ‘collision part’ of the

evolution equation for f .

The equation of continuity in phase space reads:

∂f

∂t
+ v

∂f

∂x
+

∂

∂v
(

1

m
F f) = 0 (2)

(i.e. ∂tf = L0 f + λLint f ≡ Lf ; cf. (1)). In the weak-coupling approximation (i.e. λ� 1)

a (non-markovian) generalized master equation (GME) is obtained to order λ2 (note that the

Vlasov term, in λ1, disappears once the reservoir is taken to be homogeneous). The standard

‘markovianization’ method consists in substituting with the zeroth-order solution, assuming that

f(t − τ) ≈ e−L0τ f(t) ≡ U(−τ) f(t), and then evaluating the kernel asymptotically. In the

homogeneous case (i.e. f = f(v; t)) one thus obtains the 2nd order PDE [1]:

∂f

∂t
+

1

m
(v×B)

∂f

∂v
=

∂

∂v
[A(v)

∂

∂v
+ µ a(v)] f (3)

where A11 = A22 ≡ D⊥(v), A12 = −A21 ≡ D6 (v), A33 ≡ D‖(v), Ai3 = A3i = 0 (i = 1, 2)

and a is a 3d vector whose form will be omitted (the field was assumed to lie along the z-

direction); note that the rhs can be re-arranged into the form of a ‘Landau-Fokker-Planck’-type

equation [2]:

rhs(3) =
∂2

∂vr ∂vs
[Ars(v) f ] − ∂

∂vr
[Fr(v) f ]

In the general case (f = f(x,v; t)) we find:

∂f

∂t
+ v

∂f

∂x
+

1

m
(v ×B)

∂f

∂v
=

∂

∂v
[A(v)

∂

∂v
+ C(v)

∂

∂x
+ µ a(v)] f (4)



(cf.[3]); µ ≡ m/mα
1 . The exact expressions for the coefficients in eqs. (3), (4) are too lengthy

to report here; in fact, they can be found in previous studies (cf. [1], [3]; our results are in full

agreement with expressions therein). The point we want to make is that equation (4) does not

preserve the positivity of the d.f., as the 2nd order matrix is not positive definite (because of the

second term in the rhs [4]).

In search for a correct markovian approximation, we have considered the averaging oper-

ator:

At′ · = lim
T→∞

1

2T

∫ T

−T
dt′ U(−t′) · U(t′) (5)

which was applied to the rhs of Eq. (4). The (markovian) evolution operator thus defined was

first introduced in the theory of quantum open systems [5] and was later implemented in classical

systems [6]. As a matter of fact, the implementation of this operator seems to be well defined

for classical subsystems possessing a discrete spectrum of eigenvalues of the corresponding

Liouville operator (cf.[6]); yet, this is not the case for free particle motion. It was therefore

expected (and indeed verified) that a problem would probably arise in the z-direction as the

magnetic field does not confine motion along z (the Lorentz force yields no component along

the field). For this reason, we shall only consider distribution functions which do not depend on

z (actually looking into the plane ⊥ B).

The result in the homogeneous case coincides with Eq. (3). In the general case, however,

the change is rather dramatic; for a single-species plasma we find the equation:

∂f

∂t
+ v

∂f

∂x
+

e

mc
(v ×B)

∂f

∂v
=

=
[(

∂

∂vx
+ sΩ−1 ∂

∂y

)2

+
(
∂

∂vy
− sΩ−1 ∂

∂x

)2] [
D⊥(v)f(x,v; t)

]

+
∂2

∂v2
z

[D‖(v)f(x,v; t)] + Ω−2Q(v)(
∂2

∂x2
+

∂2

∂y2
)f(x,v; t)

−
(
∂

∂vx
+ sΩ−1 ∂

∂y

)[
Fx(v) f(x,v; t)

]
−
(
∂

∂vy
− sΩ−1 ∂

∂x

)[
Fy(v) f(x,v; t)

]

− ∂

∂vz

[
Fz(v) f(x,v; t)

]
(6)

Aij , Fi are the same as in (3), (4); the expression for Q(v) is too lengthy to present here.

All coefficients, actually functions of {v⊥, v‖; Ω} (a⊥ ≡ (a2
x + a2

y)
1/2, â ≡ 1

|a|a ∀a ∈
<3 ; Ω ≡ eB

mc
), can be analytically evaluated in a convenient reference frame e.g. {ê1, ê2, ê3} =

{b̂, v̂⊥, b̂× v̂⊥}.



Preservation of the positivity of f(x,v; t) by Eq. (6) can be readily verified [7].

2. Conclusions

In conclusion, Eq. (6) provides a correct kinetic description, from first principles, of the dy-

namics of magnetized plasma, at least up to second order in the (weak) interaction. In the

homogeneous case, the well-known previous result is obtained; furthermore, in the absence of

external field, the Landau equation is recovered. Realistic generalizations, taking into account

field-inhomogeneities and/or geometry, are definitely imposed and work in this direction is in

progress.
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