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Abstract

Considering a test-particle weakly interacting with an electrostatic plasma in
equilibrium and subject to a uniform magnetic field, a markovian Fokker-Planck-
type kinetic equation is derived and explicit expressions for the diffusion and drift
coefficients, depending on the magnetic field, are obtained. The explicit general
form of the coefficients in the equation is presented and then explicitly calculated
considering a Maxwellian reservoir distribution function and a Coulomb interaction
law.

1. Introduction

In the context of plasma kinetic theory, we have undertaken a study of the dynamics
of a charged particle interacting with a magnetized background plasma in equilibrium.
Starting from first microscopic principles, a markovian Fokker-Planck-type kinetic equa-
tion (FPE) was derived in [1] and analytical expressions for the coefficients were obtained.
The equation preserves the positivity of the phase-space distribution function, which was
actually shown not to be the case in certain “markovianization” techniques proposed in
the past. This new FP equation was thus suggested as a correct kinetic description of
magnetized plasma and is now being used as a basis for the study of the influence of
the magnetic field on the transport properties of plasma in various parameter regions
and regimes - as compared, that is, to the standard Landau description for electrostatic
plasma. A well-expected result was the explicit dependence of coefficients in the collision
term on the reservoir equilibrium distribution function, the interaction potential and the
external magnetic field. Relying on those results, we carry on here by explicitly evaluating
the diffusion coefficients under the assumption that the reservoir state is Maxwellian and
that the (long-range) interaction obeys a Coulomb law.

2. The model

We consider a test-particle (t.p.) X (charge esx = e, mass my = m) surrounded
by (and weakly coupled to) a homogeneous background plasma (N particles, of species
a; € {e,1,...}, j=1,2,...,N) (the reservoir ‘R’). The whole system is subject to a
uniform external magnetic field. The equations of motion for the test-particle are:

. . 1 e
X =vV; v=—[-(vXxB) + AFju(x,v; Xg;1)] (1)

m'c
where X = (x,v) = (xx,vs) and Xg = {X;} = (xj,Vv;) denote the coordinates of the
test- (3-) and reservoir (‘R’-) particles respectively. The interaction force Fing (x, v; Xg; )
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= —2 Y V(|x — xj|), actually the sum of interactions between ¥— and R— particles
surrounding it, may be viewed as a random process, as the reservoir is assumed to be in
equilibrium [2].

The zeroth-order (in A) problem of motion yields the well-known (helicoidal) solution:

x(t) = x(0) + N(¢) v(0) v(t) = N'(t) v(0)
where
sin Qt s (1—cosf2) O
N¥()=Q 7" | s (cosQt —1) sin ¢ 0 (2)
0 0 Qt
Q=0% = %j‘—f is the gyro-frequency of particle j and s = s,;, = |Z—a’—‘ = +1 is the sign
aj aj

of e; (the t.p. is understood where the subscript is omitted in the following).

3. Statistical formulation - a kinetic equation

The test-particle’s reduced distribution function is f(x,v;t) = (I, p)r = Jr, dXr p,
where p = p({X,Xgr};t) (F = F(Xg)) denotes the total (reservoir) phase-space distri-
bution function (d.f.), which is normalized to unity: [dXp =1 (fdXgF = 1). By
assuming the interactions to be weak, the BBGKY hierarchy of equations is truncated
to 2nd order in \; by neglecting initial correlations, f is found to obey a Non-Markovian
Master Equation. Following an approach developed in the past in the context of open
non-equilibrium statistical mechanical systems [3], the latter was shown in [1] to lead to
a Fokker-Planck-type equation of the form:

of L Of e md _ Kaz +32)

2

Diw)f] + 55Dy ()1]

ot ox  mc ov 8—1)% 8—115
r2s0 [0 T[] + @t IDE WG + 2
2[R 1] - ai A0 1] = |70 ]
FSQIRW) S-S EW S )

[4]. Note that all coefficients are functions of v (actually of {v,,v}) only. Therefore, by
integrating over space {x} one readily obtains the equation:

g—{ + %(vx B)g—{r = [(681)23 +8a—v2§> [DJ_(V)]C] + 6?;Z[Dn(v)f]
-2 R 4] - % A0 1] - 5 [F0 1] (4)

(an equation of a similar form has appeared in earlier works [5]).
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4. Coeflicients
The coefficients in (3) are defined by:

D,
D, Ny 5 [* o 72 _ikn NE (T)vm —iknNE (T)V1m
D(LXX) = Z - (27) /0 dT/dVl qﬁeq(vl)/dek e¥nNnm e nm{T)V1,
Dy
%kQ cos Qor
(—s*) 3 k3 sin Q71
k2 (1 + 3 cos Q°7) (5)
kQ
Il
(a summation over n,m is understood) and
aDL oD, oD, 9D,
= (1 - _
8D
Fo= (+mgt (6)

where v; (v1;), i = 1,2,3 denote the velocity coordinates of the test-particle (reservoir-
particle) of species oy = a (a; = o) respectively and Vj, stands for the Fourier transform
of the interaction potential (remember that V' = V(|r|) = V(r) implies that V = V(|k|) =
Vk) obviously k% = k2 + k;, k| = k,. Note the explicit dependence on the magnetic field
through Q = Q% (i = £*,1%) and also on the form of the reservoir equilibrium d.f.
$eq = Deq(v1,v))) and the interaction potential V(r).

The v;- integration in (5) can be carried out at this stage, once one assumes an
analytic form for the equilibrium reservoir distribution function (d.f.) @e,. Here, it will
be explicitly taken to be a Maxwellian of the form:

2 a’
Srax(v1) = J[ o5 eviele (7)
1=1,2,3
; , N ' 2 ore . _
(¢(()’) — (;’”TQ‘@)I/2 = \/ﬁ; ai =20y, = — Vi € {1,2,3} = {x,y, z}; we assume

here that af" = 03" =0, og‘ = 0); the summation over particle species o' is omitted in
the following). The calculation yields:

D, . 2 . , ) 1 cosQr
DZ — _12(27_‘_)4 e—vm/am/ dr (/ dk e~ om Um /4 ki ‘/}3) (—8) % sin 27
DS_XX) m 0 14 3 cosQr
DH = %(27’()4 —Um/zrm / dT (/ dk G_Um qM/4 k Vk) ) (8)
where
205,
o = (0'1,0'2,0'3) k 75 U z k Nnm _ZO_L (9)

Note that the integral within parenthesis possesses a cyhndrlcal symmetry due to the
existence of the N matrix in it (cf. (2)); in the absence of an external magnetic (or any)
field, it reduces to a spherically symmetric form, as N(7) — 7L
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As a matter of fact, relation (8) holds as it stands for any particular form of V(7). Let
us now explicitly assume that the (long-range) interaction potential V'(r) is a Coulomb-

ki_.‘ik_ﬁ (Vo, Vi are appropriate constant

quantities). The coefficients in (5) (actually functions of {v.,v),t; 01,0),€}) now be-

type long-range potential: V(r) = ZTQ ie. Vi, =

come:
D,
DZ N ot ¢ o0 — i in2 £ kJ_UJ_ . Qr
DS_XX) :W(Qﬂ')‘l%? /0 dT/O ko_e 1Lqgz 8 2 JO(2 q sm7)
Dy
L cosQr

2

{ { F.} } 52 cos QT (10)

F 1+ 3 cosQr
1

where the functions F' = Fy, |p(ky,v),T; 0)) are given by:
d —v2/o
Fuy = i% Vaikore "V

1 v
—l—z oIk /4 Z {GSICLU”T (1F 0‘|ki7'2/2 FskoyT) Erfe(5\/o) ko + si) (11)
4 s=+1,—1 2 \/E
the upper (lower) signs corresponding to the L — (|| —) parts respectively. Erfc(z)
denotes the complementary error function: Erfc(z) =1— Erf(z) =1— % [Fe P dt.
Note that the integrand vanishes at infinity i.e. at k&, — oo (and also at 7 — o00).
Futhermore, the limit of the integrands at £, — 0 is finite (and the same holds for 7 — 0).

5. Conclusions

In conclusion, we have reported eq.(3) as a correct kinetic description, from first
principles, of the dynamics of magnetized plasma, at least up to second order in the (weak)
interaction. In the homogeneous case, the previous result is obtained; furthermore, in the
absence of external field, the Landau equation is recovered. Once the role of the magnetic
field on transport properties is elucidated, realistic generalizations, taking into account
field-inhomogeneities, should be taken into account; work in this direction is in progress.
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