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Abstract

A test-particle weakly interacting with an electrostatic plasma in equilibrium

inside a uniform magnetic field is considered. A markovian Fokker-Planck-type

kinetic equation is derived and explicit expressions for the diffusion and drift coef-

ficients, depending on the magnetic field, are presented and calculated in the case

of a two-temperature Maxwellian background and a Debye interaction potential.

In the context of plasma kinetic theory, we have undertaken a study of the dynamics

of a charged particle interacting with a magnetized background plasma in equilibrium.

Starting from first microscopic principles, a markovian Fokker-Planck-type kinetic equa-

tion (F.P.E.) was derived in [1]. This new F.P.E., which preserves the positivity of the

t.p.’s distribution function (d.f.) (actually shown not to be the case in certain “marko-

vianization” techniques proposed in the past), was thus suggested as a basis for the study

of the influence of a magnetic field on the kinetic properties of plasma (as compared, that

is, to the standard Landau description). In the following, we summarize these results

and then carry on by explicitly evaluating the diffusion coefficients for a two-temperature

Maxwellian reservoir state and a Debye-type interaction law.

We consider a test-particle (t.p.) Σ (charge eαΣ = e, mass mα
Σ = m) surrounded

by (and weakly coupled to) a homogeneous background plasma (the reservoir ‘R’: N

particles, of species α′ ∈ {αj} = {e, i, ...}, j = 1, 2, . . . , N). The whole system is

subject to a uniform stationary magnetic field along ẑ. The equations of motion for the

t.p. read:

ẋ = v ; v̇ =
1

m
[
e

c
(v × B) + λFint(x,v;XR; t)] (1)

where X = (x,v) ≡ (xΣ,vΣ) and XR ≡ {Xj} = (xj,vj) denote the coordinates of the

test- (Σ) and reservoir (R) particles respectively. The interaction force Fint(x,v;XR; t)



= − ∂
∂x

∑
V (|x − xj|), i.e. the sum of random interactions between Σ and the heat bath

(assumed in equilibrium), is actually a stationary Gaussian process with zero mean-value.

The zeroth-order (in λ) problem of motion yields the well-known (helicoidal) solution:

x(t) = x(0) + N(t)v(0) v(t) = N′(t)v(0)

where

N
αj

j (t) = Ω−1




sin Ωt s (1 − cos Ωt) 0

s (cos Ωt− 1) sin Ωt 0

0 0 Ωt


 (2)

Ω = Ωαj ≡ |eαj |B
mαj c

is the gyro-frequency of particle j and s = sαj
=

eαj

|eαj |
= ±1 is the sign

of ej (the subscript will be omitted where Σ is understood); N′(t) = dN(t)/dt.

The test-particle’s reduced distribution function is f(x,v; t) = (I, ρ)R ≡ ∫
ΓR

dXR ρ,

(ρ = ρ({X,XR}; t) denotes the total phase-space d.f., normalized to unity:
∫
dX ρ = 1).

By assuming interactions to be weak, the BBGKY hierarchy of equations is truncated

to 2nd order in λ; neglecting initial correlations, f is found to obey a Non-Markovian

Master Equation. Following an approach developed in the past in the theory of open

statistical mechanical systems [2], the latter was shown [1] to lead to the equation:

∂f

∂t
+ v

∂f

∂x
+

e

mc
(v × B)

∂f

∂v
=

[(
∂2

∂v2
x

+
∂2

∂v2
y

)[
D⊥(v)f

]
+

∂2

∂v2
z

[D‖(v)f ]

+2 sΩ−1
[

∂2

∂vx∂y
− ∂2

∂vy∂x

][
D⊥(v)f

]
+ Ω−2 [D

(XX)
⊥ (v)](

∂2

∂x2
+

∂2

∂y2
)f

− ∂

∂vx

[
Fx(v) f

]
− ∂

∂vy

[
Fy(v) f

]
− ∂

∂vz

[
Fz(v) f

]

+ sΩ−1 Fy(v)
∂

∂x
f − sΩ−1 Fx(v)

∂

∂y
f (3)

where f = f(x,v; t) [3]. Note that, by integrating over {x}, one recovers a reduced

F.P.E., describing the evolution of f(v; t), which has appeared in earlier works [4].

The diffusion coefficients in (3) are defined by:
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(4)

where Cα,α′

{⊥,‖}(v⊥, v⊥; Ω) are (diagonal) elements of the force-correlation matrix C(τ) =

〈Fint(t) Fint(t− τ)〉R; they come out to be:

C∗ = nα′(2π)3
∫
dv1 φ

α′
eq(v1)

∫
dk Ṽ 2

k e
iknNα

nm(τ)vm e−iknNα′
nm(τ)v1,m k2

∗ (5)



(∗ ∈ {⊥, ‖}; a summation over n,m is understood) where vi (v1,i), i = 1, 2, 3 denote the

velocity coordinates of the test- (R-) particle and Ṽk stands for the Fourier transform

of V (r); remember that V = V (|r|) = V (r) implies V = Ṽ (|k|) ≡ Ṽk. The dynamical

friction terms in (3) are given by:

Fx = (1 + µ) (
∂D⊥
∂vx

+
∂D�
∂vy

) Fy = (1 + µ) (−∂D�
∂vx

+
∂D⊥
∂vy

)

Fz = (1 + µ)
∂D‖
∂vz

µ =
mα

mα′
(6)

Note the explicit dependence on the magnetic field as well as on the form of the reservoir

equilibrium d.f. φeq = φeq(v⊥, v‖) and the interaction potential V (r).

The v1- integration in (4) can be carried out at this stage, once one assumes an

analytic form for φeq. Here, it will be explicitly taken to be a Maxwellian of the form:

φα′
Max(v1) =

∏
i=1,2,3

φ
(i,α′)
0 e−v2

1,i/σ
α′
i (7)

(φ
(i)
0 = ( mα′

2πT
(i)

α′
)1/2 ≡ 1√

πσα′
i

; σα′
i ≡ 2 vα

′
i,th

2 ≡ 2Tα′
i

mα′
∀i ∈ {1, 2, 3} ≡ {x, y, z}; For a

two-temperature single-species plasma (i.e. σ1 = σ2 = σ⊥, σ3 = σ‖) we get:
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(8)

Obviously, m (n) in {m,n} correspond to the upper (lower) i.e. ⊥ (‖) parts respectively.

In fact, relation (8) holds as it stands for any particular form of (long-range) central

interaction potential V (r). Let us now explicitly consider a Debye potential: V (r) =

e2 e−kD r

r
i.e. Ṽk = e2

2π
1

k2+k2
D

=
Ṽ 2
0

k2+k2
D

(λD = k−1
D is the Debye length [5]; obviously k2 =

k2
⊥ +k2

‖). The coefficients in (4) (actually functions of {v⊥, v‖, t; σ⊥, σ‖,Ω}) now become:
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0

∫ t

0
dτ

∫ ∞

0
dk⊥ e

−σ⊥
k2
⊥

Ω2 sin2 Ωτ
2 JO(2

k⊥v⊥
Ω

sin
Ωτ

2
)



(
1 − k2

D

k2
D + k2

⊥

){3/2,1/2}



{
F⊥

}

F‖










1
2

cos Ωτ

−s
2

sin Ωτ

1 + 1
2

cos Ωτ




1




(9)

where the functions F = F{⊥,‖}(k⊥, v‖, τ ; σ‖) are given by:

F{⊥,‖} = ±
√
π

2

√
σ‖ k̃⊥ τ e

−v2
‖/σ‖

+
π

4
eσ‖k̃

2
⊥τ2/4

∑
s=+1,−1

[
esk̃⊥v‖τ (1 ∓ σ‖k̃

2
⊥τ

2/2 ∓ sk̃⊥v‖τ)Erfc(
1

2

√
σ‖k̃⊥τ + s

v‖√
σ‖

)
]

(10)

the upper (lower) signs corresponding to the ⊥ (‖)- parts respectively; k̃⊥ = (k2
⊥+k2

D)1/2.

Erfc(x) is the complementary error function: Erfc(x) = 1−Erf(x) ≡ 1− 2√
π

∫ x
0 e

−t2dt.

Note that the integrand vanishes at infinity i.e. at k̃⊥ → ∞ (and also at τ → ∞).

Futhermore, the limit of the integrands at k̃⊥ → 0 is finite (and the same holds for

τ → 0).

In conclusion, we have reported eq.(3) as a correct kinetic description, from first

principles, of the dynamics of magnetized plasma. In the homogeneous d.f. case, the

previous result [4] is obtained; furthermore, in the absence of external field, the Landau

equation is recovered. Once some insight considering the role of the magnetic field on

transport properties is gained with this model, more realistic fields and/or geometries

will be taken into account; work in this direction is in progress.
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