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Abstract

A previously derived Fokker-Planck-type collision integral for a test-particle in
magnetized plasma is explicitly evaluated. Explicit new formulae are obtained for
the diffusion coefficients and the interaction-force correlations; their dependence
on physical parameters, including the magnitude of the (uniform) field, is briefly

studied and commented upon.

In earlier work we have undertaken a study of the dynamics of a charged test-particle
(t.p.) moving inside a magnetized background plasma in equilibrium. Starting from
first microscopic principles, a Fokker-Planck-type kinetic equation (FPE) was derived
and analytical expressions for the coefficients were obtained [1]. Emphasis was made
on the magnetic field dependence of the collision integral - as compared to the standard
unmagnetized Landau description [2] - as well as the effect of non space-uniformity of the
t.p. distribution function f(x,v;t). The diffusion coefficients were explicitly evaluated
for a Maxwellian background state and a Debye-type interaction law [3]. The aim of
this brief report is to summarize those results and present a set of exact computable
expressions for the diffusion coefficients, pointing out their explicit dependence on t.p.
microscopic variables (velocity) and the magnetic field B. A detailed numerical study
will be reported in a forthcoming report.

The FP - type kinetic equation obtained for the above system reads [1], [4]:
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where B is the external magnetic field (taken to be uniform for simplicity); obviously,
m = m, and e = e, = s|e,| denote the mass and charge, respectively, of the t.p. (of
species « = e,1,...) and Q = |e,|B/mqc is the cyclotron frequency. By integrating over
position {x}, one obtains a reduced FPE, describing the evolution of fi,cq;(v;t) = [ dx f;
this is a ‘linearized’ version of a kinetic equation which has appeared in earlier works [5].

The diffusion coefficients in (1) are functions of {vy,v); §2; t}; they are given by:
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where all quantities are non-dimensional® except Dy = 77123}{27\7% Remember that the

dynamical friction vector F; is defined via velocity derivatives of D;;; both D;;, F; are
thus related to the (interaction) force-correlation matrix C;;(7) = (Fint,;(t) Fint, ;(t—7))r

[3]. The functions F, = F,(¢(z,7),7)) (x =L,]|) are:
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where gb = %T’l‘,ﬁ{J_,H} = U{J_,”}//Uth\/i and A = \/ikﬁDUth = \/5“;2—1’ = \/5% As
obvious, vy, = (kpT/m)'/? is the thermal velocity, kp = —422‘2%2‘* = r,! is the Debye

wave-number, w, o = (%)U2 is the plasma (Langmuir) frequency and pr, = vy, /€ is
the Larmor radius. Notice the competition between collision and gyration scales via .

We have chosen a set of typical values, i.e. a temperature of 7' = 10 KeV and
a particle density of n = 10" em™ = 102 m™3, implying a plasma frequency w,, =
5.64-10'" s7! and a (gyro-)frequency of: Q, = 1.76 10'' x B s~! (B expressed in Tesla).

In figure 1, we have represented all coefficients against time ¢ (measured in cyclotron
periods), for B = 17T'. The diffusion coefficients increase fast in time, practically attaining

their asymptotic value within a few periods.

1Relations (2), (3) actually correspond to the formulae presented in [3], rescaling the integration

2
variables therein as: 7/ = Qr, z = (1 + :—;)1/ 2. however, notice that we limit ourselves in the single
D

species case (e.g. electron plasma) here (i.e. &' = a, cf. [3]).
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Figure 1: (a) Diffusion coefficients plotted against time ¢ for B = 17T. (b) The correlation
function C| (¢) for B = 1,2,3T (in ascending order); notice the tiny peaks every period.

The velocity dependence of the coefficients qualitatively reproduces the unmagnetized

result [2]: see figure 2; the diffusion coefficients take lower values for faster particles.
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Figure 2: The diffusion coefficient D | and the corresponding friction vector F , plotted against

velocity v, , for B = 1T (solid line) and B = 0 (dashed line).

In figure 3a we have depicted D, versus A\. Above A ~ 1 (i.e. for p;, = rp or higher)
the field slightly enhances relaxation [6]: the higher its magnitude B, the higher the value
of D, (7). Physically speaking, this fact reflects particle confinement by the magnetic
field: particles stick to their helicoidal trajectory around the field lines and thus interact
longer. The friction vector F, ~ 0D, /Ov, behaves in a similar way (fig. 3b) . However,
their || — counterparts (fig. 3c, d) are practically time- (and field-) independent.

In conclusion, we have reported a set of new exact formulae for the diffusion coeffi-
cients in magnetized plasma. These formulae suggest an explicit dependence on particle
velocity and physical parameters (plasma temperature, density) and - most important -

the magnitude of the magnetic field. A more extended study will be reported soon.
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Figure 3: The perpendicular diffusion coefficient D, and the friction vector (norm) F, (top),
and their || —counterparts (bottom) plotted against A (~ 1/B), at different instants of ¢. D
slightly increases in time, yet only around A =~ 1 (i.e. p;, = rp), above which it practically
remains constant. The field-dependence is smoothed out, as D | approaches the asymptotic

value for 2 — 0 (dash-dot line). D), comes out to be independent of the field and so does F.
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