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In order to relate macroscopic random motion (described e.g. by Langevin-type theories) to mi­
croscopic dynamics, we have undertaken the derivation of a Fokker-Planck-type equation from first 
microscopic principles. Both subsystems are subject to an external force field. Explicit expressions 
for the diffusion and drift coefficients are obtained, in terms of the field. 

1. Introduction 

The relation of macroscopic random motion to microscopic particle dynamics is a long 
standing problem. In a generic manner, fluctuations due to particle interactions (colli­
sions) are modeled by a Fokker-Planck-type equation (FPE) (related to Langevin theory 
of random motion), which may either be derived intuitively, via phenomenology or, for­
mally, through kinetic-theoretical arguments [1]. In the latter context, a number of works 
in Non-Equilibrium Statistical Mechanics have been devoted to the study of the relax­
ation of a small subsystem interacting with a large thermalized environment (heat bath). 
A common aim of such studies is the derivation of a kinetic equation, describing the 
evolution of a phase-space probability density function f. Assuming weak-interactions 
(A = Epot! Ecin < < I), this is achieved by using either perturbation theory in A (typi­
cally a BBGKY hierarchy of equations for reduced distribution functions [2]) or formal 
theories for open systems (e.g. projection-operator methods [31, [4]). In a generic manner, 
both approaches rely on a Generalized Master Equation (GME), obtained in 2nd order in 
A. The kernel of the GME is evaluated along particle trajectories, so external force fields 
enter the collision operator. Our aim here is to discuss a general method for the rigorous 
derivation of a FP-type equation from classical microscopic dynamics, with due account 
of external force fields and long-range interactions. For an analogous treatment in the 
quantum-mechanical case, see in [5]. 

2. The Model 

We consider a test-particle (tp.), say L:, surrounded by (and weakly coupled to) a homoge­
neous reservoir R; X = (x, v) = (XI;(t) , VI; (t)) and XR - {Xj} = {Xj (t) , Vj (t), j = 
1,2,3, " ., N} will denote the coordinates of the test- (L:-) and reservoir- (R- ) particles. 
Both subsystems are subject to an external force field. 

The Hamiltonian of the system is: 

(1) 
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where HR (H.,:J denotes the Hamiltonian of the reservoir (t.p.) alone: HR = L~=I H j + 
L j<n L~= I Vjn . The form of the single-particle Hamiltonian H j should take into ac­
count the external field. HI stands for the interaction (assumed to be weak: .>- « 1) 
between 2: and R : HI = L~= I VEn , where Vij = V (l xi - Xj I) is a binary-interaction 
(long-range e.g. Coulomb-type) potential. The resulting equations of motion for the test­
particle are: 

x=v , v = Fa (x , v ) + .>-Fint (x , v ; XR; t ) (2) 

The force Fa is due to the external field. The interaction force Fint (x, v; XR; t) = 

-tx L V (l x - Xj I) is actually the sum of interactions between 2: - and R- particles 
surrounding it: it is a random process, as the reservoir is assumed to be in a homogeneous 
equilibrium state (Fint is actually a zero-mean Gaussian process). 

We will assume that the zeroth-order ( 'free ' ) problem of motion, i.e. (2) for .>- = 0, 
yields a known (linearized) solution in the form: 

v (O)(t ) = M' (t ) x + N'(t ) v , x (O)( t ) = x + l dr v (r ) = M (t )x + N (t )v (3) 

with the initial condition {x, v} = {x(O)(O), v(O)(O)} (a' = da / dt). Given a dynamical 
problem, the d x d matrices {M (t ), N (t)} (d = 1, 2, 3) express the action of the field on 
particle dynamics. For example, systems obeying (3) include: 
(i) Id linear oscillator chains: Fo = -mw2 x (t.p. mass m; frequency w), where: M(t) = 

cos wt, N (t ) = w- I sin wt, (ii) magnetized plasma, where Fa is the Lorentz force: Fa = 
- ,;v x B (q is t.p. charge) and: Mij = 8ij (i , j = 1, 2, 3); N'(t ) is a rotation matrix (by 
an angle () = nt; n is the cyclotron frequency n = qB f m c) around the field B direction 

(and N (t ) :...- J; N' (t' ) dt') [6] and, of course, (iii) the free motion (no-field-) limit, where: 
Mij = 8ij , Nij (t ) = 8ij t. 

3. Statistical Formulation - a 'Quasi-Markovian' Approximation 

Let P = p( {X, X R } ; t ) be the total phase-space distribution function (d.f), normalized as 
J dX p = 1. The equation of continuity in phase space r reads: 

ap + v. ap + .i.. (~F' p) = 0 at J a Xj aVj m J 
(4) 

(a summation over particles j is understood. Defining appropriate' 8-body' (8 = 1, 2, 3, ... ) 
reduced distribution functions (rdf) , among which the t.p. rdf: f(x , V; t ) = (I , P)R = 
J r

R 
dXR P (normalized to unity), and then appropriately integrating the Liouville equa­

tion (4) , we obtain a BBGKY hierarchy of coupled evolution equations for the rdfs (details 
in [2], [6]). Truncating to .>-2 , one obtains: 

(at - L~E) ) f(X ; t ) =.>-2 J dXI LI g(X , XI;t) + 0(.>-3) 

(at - L~E) - L~I ) ) g(X, Xl; t) = .>- LI FI (Xl) f(X) + 0(.>-2) (5) 

where L~j) (j E {2:, lR)) is the zeroth-order ("free") LiouvilIian in the presence of the 
field: 

0) a· 1 a Lo ·=-Vj----(Fo ·) 
EJxj mj OVj 

(6) 
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and L I = L:;::l is the binary interaction operator: 

(7) 

As obvious, f = f(X; t), F1 (XlR) and h(X, Xl;t) denote the ~-I-body, R-l-body 
and (lR + ~)-2-body rdfs respectively and 9 = g(X, Xl ; t) is the 'two-body' (lR + ~) 
correlation function: 9 = h - F1 f (i.e. 9 = 0 for uncorrelated particles). We have 
assumed the reservoir to be in a homogeneous equilibrium state Fl = n rPeq(Vl ) (n = ~ 
is the reservoir particle density; obviously: aFd at = L61

) Fl = 0), so the mean-field 
(Vlasov) term disappears for reasons of symmetry. 

Neglecting initial correlations, eqs. (5) lead to the Non-Markovian Generalized Mas­
ter Equation: 

ad - Lo f = n 1t dT J dXl dVl LI UO(T) LI rPeq(Vl ) f(x , v ; t - T) (8) 

The "free " Liouville operator Lo = L6L. ) is defined in (6), and LI in (7); UO(T) = 

U6L.) (T) U6 1
) (T) is the evolution operator (propagator) related to the formal solution of 

the "free" Liouville equation (i.e. (Sa) for>. = 0): f(t) = eL~j) t f (O) U6
j
) (t) f(O) 

o E {~, I}). Note the non-Markovian character (non-locality) of (8). 
A widely used 'markovian' assumption consists in assuming that f(t - T) ~ e- LOT 

f(t) - Uo( -T) f(t), and then taking t ~ 00. It should be noted here, that the time­
propagator U (t) does not permute with r -space gradients tv' tx; indeed, one rigorously 

obtains the expression: U6j)(t)&~JU6j)( -t) = N/(t) &~J + NjT(t) 8~J 0 =~, lR; 
superscript T denotes the transposed matrix); a similar expressions holds for the space 
gradient tx' The field therefore generically (and inevitably) enters a rigorously derived 
collision term via the matrices N, N l 

For a spatially uniform system: f = f(v; t) eqs. (6), (7) and (8) lead to the Fokker­
Planck-type equation: 

af 1 af a a2 

- + -Fo- = --(Fi f) + (Dij f) 
at m av aVi aVi aVj 

(9) 

where the vector Fi = (1 + :::,) 8//v/ represents the dynamical friction force suffered 
by the particle, due to interactions with its environment, and D is a (positive definite) 
diffusion matrix given by: 

1 1t
-

00 

D = -2 dTC(t ,t-T) N ,T(T) 
m 0 

( 10) 

where 

C = n J dXl J dVl rPeq(Vl ) Fint ( lx (O) - Xl (0) I) ® Fint ( lx (O) (-T) - Xl (0) (-T) I) 

( II) 

denotes the correlation matrix Gij = (Fint ,i(t) Fint ,j(t - T) )R; (11) becomes: 

( 12) 
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where Vk denotes the Fourier transform of V(r). The exponential: ar = r(t) - r(t - T) 
(where r = x (O) - Xl (0 ) ) can be computed by (3); if M = I, in particular, Lh(T) = 
N(T) (V(O) - VI (0) ); the process is then stationary: Gij = Gij(T) [6]. 

It should be noted, for rigor, that the kinetic operator defined above does not define 
a semi-group [I). In the general case: f = f(x , V; t), one obtains a modified FPE, de­
scribing diffusion in the full 2d-dimensional r - space {x, v}; however, the associated 
2d x 2d diffusion matrix is not positive definite, so positivity preservation of the d.f. f 
is not guaranteed. This problem was first pointed out in the theory of open quantum me­
chanical systems (see e.g. [3, 5), [7)). An alternative treatment was suggested as possible 
remedy in [7) and later formulated with respect to certain classical systems of interest [4, 
6). Summarizing those results, not reported here for lack of space, evaluating the action of 

the operator: At" = limT~oo A J~T dtf u (O) (_tf) . u(O) (t') on the "quasi-Markovian" 
operator defined above results in a modified, 2d-variable Fokker-Planck equation, which 
contains the a spatial diffusion operator (previously absent); the associated diffusion ma­
trix is now positive definite. 

In conclusion, we have suggested a derivation, of the Fokker-Planck equation (9) from 
a kinetic perspective. Relations (10) - (12) for coefficients should be ' tailor-cut' to the spe­
cific system one is interested in. Diffusion coefficients are thus related to force correlations 
in agreement with phenomenological stochastic theories. The interaction mechanism, with 
account of the field , is an intrinsic part of the formalism here, and is not plainly represented 
by ad hoc assumptions on the nature of the process (e.g. white noise or else). Furthermore, 
the external force field appears explicitly in correlation functions Gij and diffusion - drift 
coefficients (i.e. relaxation scales). 
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