RANDOM PARTICLE MOTION IN MAGNETIZED PLASMA

IOANNIS KOURAKIS ${ }^{\dagger}$, ALKIS GRECOS ${ }^{\ddagger}$
${ }^{\dagger}$ Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie Ruhr-Universität Bochum, D-44780 Bochum, Germany E-mail: ioannis@tp4.rub.de
${ }^{\ddagger}$ University of Thessaly, Euratom - Hellenic Republic Association Laboratory of Fluid Mechanics, Athinon Avenue - Pedion Areos GR 38334 Volos, Greece; E-mail: agrecos@mie.uth.gr

Abstract

A multivariate Fokker-Planck-type kinetic equation modeling a test - particle weakly interacting with an electrostatic plasma, in the presence of a magnetic field \mathbf{B}, is analytically solved in an Ornstein Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments and particle density as a function of time. The process is diffusive.

1. Introduction - Formulation of the Problem

The kinetic-theoretical treatment of long-range particle interactions ('collisions') in electrostatic plasma is often based on Landau-type equations [1], describing the evolution of a distribution function (df) $f(\mathbf{v} ; t)$ in velocity space, in the absence of external force fields. This description needs to be modified in the presence of an external field and/or $d f$ spatial inhomogeneity, which not only influence the (free) (Liouville) kinetic operator, but also modify the collision term.

A Fokker-Planck-type kinetic equation (FPE) was recently derived [2,3] from first principles for a test-particle (charge q, mass m) weakly interacting with a plasma embedded in a uniform magnetic field \mathbf{B}. This equation, describing the evolution of the $d f$ $f(\mathbf{x}, \mathbf{v} ; t)$ in phase space $\Gamma=\{\mathbf{x}, \mathbf{v}\}$, has the form:

$$
\begin{gather*}
\frac{\partial f}{\partial t}+\mathbf{v} \frac{\partial f}{\partial \mathbf{x}}+\Omega(\mathbf{v} \times \hat{b}) \frac{\partial f}{\partial \mathbf{v}}=\left(\frac{\partial^{2}}{\partial v_{x}^{2}}+\frac{\partial^{2}}{\partial v_{y}^{2}}\right)\left(D_{\perp} f\right)+\frac{\partial^{2}}{\partial v_{z}^{2}}\left(D_{\|} f\right) \\
+2 \Omega^{-1}\left(\frac{\partial^{2}}{\partial v_{x} \partial y}-\frac{\partial^{2}}{\partial v_{y} \partial x}\right)\left(D_{\perp} f\right)+\Omega^{-2}\left(Q+D_{\perp}\right)\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f \\
-\frac{\partial}{\partial v_{x}}\left(\mathcal{F}_{x} f\right)-\frac{\partial}{\partial v_{y}}\left(\mathcal{F}_{y} f\right)-\frac{\partial}{\partial v_{z}}\left(\mathcal{F}_{z} f\right)+\Omega^{-1} \mathcal{F}_{y} \frac{\partial}{\partial x} f-\Omega^{-1} \mathcal{F}_{x} \frac{\partial}{\partial y} f \tag{1}
\end{gather*}
$$

where $\Omega=q B / m c$ is the cyclotron frequency; $\hat{b}=\mathbf{B} / B$ is the unit vector in the direction of the field $\mathbf{B} ; \partial f / \partial z=0$ by assumption. Note the spatial diffusion term in the righthand side ($r h s$), in fact absent in most previous studies. The lengthy expressions for the coefficients, omitted here, can be found in [3, 4].

In principle, one aims in obtaining an exact solution for $f(\mathbf{x}, \mathbf{v} ; t)$ in order to trace the evolution of variable moments in time, as well as their dependence on physical parameters - the magnetic field \mathbf{B}, in particular. However, an exact analytical treatment is not possible, since all coefficients entering the collision term (rhs) are complicated functions of particle velocity \mathbf{v}; in addition, they explicitly depend on the magnitude of the external magnetic field. Nevertheless, a numerical study of the coefficients in terms of physical parameters
shows that there exists a region where the diffusion coefficients D_{\dagger} are practically constant (i.e. independent of \mathbf{v}) while friction terms \mathcal{F}_{\dagger} are linear in \mathbf{v} [3], [4b] (throughout this text, \dagger will denote either \perp or $\|$, referring to quantities perpendicular or parallel, respectively, to \mathbf{B}). In specific, this is true for low particle velocity value (as compared to the thermal velocity): intuitively speaking, this is close to the standard Langevin picture of a (slow) heavy particle randomly interacting with (faster) light particles surrounding it. This study is devoted to the analytical solution of (1), in the region of validity of this approximation [5].

Setting $D_{\dagger}=$ const., $\mathcal{F}_{\dagger}=\gamma_{\dagger} v_{\dagger}$, eq. (1) may be cast into the standard form of a multivariate (6d) FPE:

$$
\begin{equation*}
\frac{\partial f}{\partial t}=-\sum_{i, j} A_{i j} \frac{\partial}{\partial y_{i}}\left(y_{i} f\right)+\sum_{i, j} D_{i j} \frac{\partial^{2} f}{\partial y_{i} \partial y_{j}} \tag{2}
\end{equation*}
$$

where $f=f(\mathbf{y} ; t) ; \mathbf{y}$ is the position vector (\mathbf{x}, \mathbf{v}) in phase space Γ; cf. (VIII.6.1) in [6]. The diffusion (D) and drift (A) square matrices appearing in (2) are directly derived from (1) via the above assumption and will be omitted here for brevity. Note that \mathbf{D} is symmetric and positive definite. Retain the equilibrium condition: $\gamma_{\dagger}=\frac{m}{T_{\dagger}^{e q}} D_{\dagger}$ $\equiv 2 \beta_{\dagger}^{0} D_{\dagger}$, which is necessary and sufficient in order for the Maxwellian state: $f_{e q}(\mathbf{v})=$ $f_{e q}(\mathbf{0}) e^{-\beta_{\perp}^{0} v_{\perp}^{2}} e^{-\beta_{\|}^{0} v_{\|}^{2}}$ to cancel the rhs in (2). Eq. (1) is now approximated by (2), which defines a multi-dimensional Ornstein-Uhlenbeck process; it may be solved for $f(t)$ via a Green function method. Furthermore, since it describes a Gaussian process, an exact theory exists for the calculation of variable mean values and covariances (see e.g. §VIII. 6 in [6]). The calculation, involving multiple integrations in all Γ - space variables ($\{\mathbf{x}, \mathbf{v}\}$), is rather lengthy yet straightforward. This is a brief report of results (exposed in [3] in detail).

2. Exact Solution for a Maxwelian Initial Velocity Distribution

Assuming a Maxwellian initial distribution of the form:

$$
\begin{equation*}
f_{0}(\mathbf{x}, \mathbf{v})=\frac{1}{\pi^{3 / 2}} \beta_{\perp} \beta_{\|}^{1 / 2} e^{-\beta_{\perp} v_{\perp}^{2}} e^{-\beta_{\|} v_{\|}^{2}} \delta(\mathbf{x}) \tag{3}
\end{equation*}
$$

($\beta_{\dagger}=m / 2 T_{\dagger}$) we obtain the (time-dependent) $d f$:

$$
\begin{equation*}
f(\mathbf{x}, \mathbf{v} ; t)=\frac{\tilde{\beta}_{\perp} \tilde{\beta}_{\|}^{1 / 2} \tilde{\beta}_{\perp}^{(X)}}{\pi^{5 / 2}} e^{-\tilde{\beta}_{\perp} v_{\perp}^{2}} e^{-\tilde{\beta}_{\|} v_{\|}^{2}} e^{-\tilde{\beta}_{\perp}^{(X)}} \Xi^{2} I_{0}\left(4 \frac{\tilde{\beta}_{\perp}^{(X)} \tilde{\beta}_{\perp} \xi}{\Omega} v_{\perp} \rho\right) \tag{4}
\end{equation*}
$$

where $\rho=x^{2}+y^{2}, v_{\perp}=v_{x}^{2}+v_{y}^{2}$ and $v_{\|}=v_{z}$; note the definitions:

$$
\begin{align*}
\tilde{\beta}_{\dagger}(t)= & \frac{\theta}{\left(1-e^{-2 \gamma_{+} t}\right) \theta+e^{-2 \gamma_{\dagger} t}} \beta_{\dagger}^{0}, \quad \Xi(\tau)=\rho^{2}+\left(\frac{2 \tilde{\beta}_{\perp}(\tau) \xi(\tau)}{\Omega} v_{\perp}\right)^{2} \\
\tilde{\beta}_{\perp}^{(X)}(\tau)= & \Omega^{2} \beta_{\perp}^{0}\left\{1-e^{-2 \tau}+\frac{\left(1-e^{-\tau}\right)^{2}}{\theta}\right. \\
& \left.\quad-\frac{1}{\theta} \frac{\theta^{2}\left(1-e^{-2 \tau}\right)^{2}+e^{-2 \tau}\left(1-e^{-\tau}\right)^{2}}{\theta\left(1-e^{-2 \tau}\right)+e^{-2 \tau}}+4 \beta_{\perp}^{0} Q t\right\}^{-1} \\
\xi(\tau)= & \frac{1}{\beta_{\perp}^{0}} \frac{1}{2 \theta}\left\{\theta^{2}\left(1-e^{-2 \tau}\right)^{2}+e^{-2 \tau}\left(1-e^{-\tau}\right)^{2}\right\}^{1 / 2} \tag{5}
\end{align*}
$$

where $\theta=\beta_{\dagger} / \beta_{\dagger}^{0}=T_{\dagger}^{e q} / T_{\dagger}, \tau=\gamma_{\perp} t$. We see that the velocity distribution will relax to the equilibrium state anticipated above, as physically expected, since: $\lim _{\tau \rightarrow \infty} \tilde{\beta}_{\dagger}(\tau)$ $=\frac{\gamma_{\dagger}}{2 D_{\dagger}} \equiv \beta_{\dagger}^{0}=\frac{m}{2 T_{\dagger}^{e q}}$, while spatial distribution will exhibit a classical diffusive behaviour, under the influence of collisions; check that, for $\tau \gg \gamma_{\dagger}^{-1}: \tilde{\beta}_{\perp}^{(X)}(\tau)$ behaves as $\approx \Omega^{2} \beta_{\perp}^{0} /\left(1+4 \beta_{\perp}^{0} Q t\right)$. A similar qualitative behaviour is also obtained for a Maxwellian (i.e. not localized, cf. (3)) spatial distribution at $t=0$, and also for an initial velocity distribution of the type: $f_{\perp}(\mathbf{v} ; t=0)=\delta\left(\mathbf{v}_{\perp}-\mathbf{v}_{\|}^{0}\right) \delta\left(v_{\|}-v_{\|}^{0}\right)$ (cf. fig. 1b); details are omitted here, for lack of space [3].

(a)

(b)

Fig. 1. (a) The inverse temperature $\tilde{\beta}_{\dagger}(t)$ (scaled over $\tilde{\beta}_{\dagger}(\infty)=\beta_{\dagger}^{0}$) versus time $\tau=\gamma_{\dagger} t$ for different values of $\theta=\beta / \beta^{0}=T_{e q} / T(0)$. Collisions appear more efficient in accelerating initially slow particles $(\theta>1)$ than slowing down fast ones $(\theta<1)$.
(b) The evolution $f_{\perp}\left(v_{\|} ; t\right)$ of an initial $\delta\left(v_{\|}-v_{\|}^{0}\right)$ state (sharp solid line) (\| -part; see in §2) versus velocity $v_{\|}\left(v_{\|} \in \Re\right)$ (normalized over the thermal velocity $\beta_{\|}^{0-1 / 2}$) for an initial velocity value of $2 v_{t h}$. The initial sharp profile spreads fast and attains the final zero-averaged thermalized state within a few time constants.

3. Density Profile - Moments

The mean particle density: $n(\mathbf{x}, t)=\int d \mathbf{v} f(\mathbf{x}, \mathbf{v} ; t)$ may now be calculated. Considering the initial condition: $f_{0}(\mathbf{x}, \mathbf{v})=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right) \delta\left(\mathbf{v}-\mathbf{v}_{0}\right)$, we obtain:

$$
\begin{equation*}
n(\rho, t)=\frac{1}{2 \pi} \frac{1}{L^{2}(t)} e^{-\rho^{2} / 2 L^{2}(t)} e^{-R_{0}^{2}(t) / 2 L^{2}(t)} I_{0}\left(\frac{R_{0}(t) \rho}{L^{2}(t)}\right) \tag{6}
\end{equation*}
$$

(for simplicity the direction $\|$ to the field was neglected and the gyro-phase ϕ was averaged out); $I_{0}(x)$ denotes the modified Bessel function; the mean square displacement L^{2} reads:

$$
\begin{equation*}
L^{2}(t)=\Omega^{-2}\left[\frac{T_{\perp}^{e q}}{m}\left(1-e^{-2 \gamma_{\perp} t}\right)+4 Q t\right] \tag{7}
\end{equation*}
$$

and $R_{0}(t)=\left(1+e^{-2 \gamma_{\perp} t}-2 e^{-\gamma_{\perp} t} \cos \Omega t\right)^{1 / 2} v_{\perp}^{0} / \Omega$; see that $R_{0} \approx \frac{v_{\perp}^{0}}{\Omega} \equiv \rho_{L}^{0}$ after a while. For zero initial velocity, $R_{0}=0$ so a purely Gaussian profile is recovered. For higher v_{\perp}^{0}, the distribution spreads in space, as expected. See that $L^{2}(t)$ asymptotically behaves as $\sim t$, hence the classical diffusion mechanism encountered in $\S 2$. Earlier results predicting diffusion as $\sim B^{-2}$ are thus confirmed [7].

Finally, the (symmetric) covariance matrix $\left\langle\left\langle y_{k} y_{l}\right\rangle\right\rangle=\left\langle y_{k} y_{l}\right\rangle-\left\langle y_{k}\right\rangle\left\langle y_{l}\right\rangle$ (where $\left.\mathbf{y}=\left(x, y, z ; v_{x}, v_{y}, v_{z}\right)\right)$ can be evaluated via the same formalism. The results for all

Fig. 2. The evolution $f_{\perp}\left(v_{\perp} ; t\right)$ of an initial Maxwellian state (\perp-part, as given by (5), (6)) versus velocity v_{\perp} (normalized over the thermal velocity $\beta_{\perp}^{0-1 / 2}$) for two values of $\theta=\beta_{*} / \beta_{*}^{0}=$ $T_{e q} / T_{*}(0):$ (a) $\theta=0.01$ (high initial plasma temperature, see black solid line at the bottom) and (b) $\theta=10$ (low initial plasma temperature, see black solid line on top). In the second case, the initial distribution relaxes faster to the final equilibrium state (practically attained after 2 time constants) in agreement with Fig. 1a.
elements are obtained in [3] and briefly exposed in [5]. For velocity covariances we obtain: $\left\langle\left\langle v_{x} v_{x}\right\rangle\right\rangle=\left\langle\left\langle v_{y} v_{y}\right\rangle\right\rangle=\frac{T_{\perp}^{e q}}{m}\left(1-e^{-2 \gamma_{\perp} t}\right)$ (also for $\left\langle\left\langle v_{z} v_{z}\right\rangle\right\rangle$, upon $\perp \rightarrow \|$). In the plane $\perp \mathbf{B}:\langle\langle x x\rangle\rangle=\langle\langle y y\rangle\rangle)=L^{2}$; cf. (7) above.

In conclusion, the analytical treatment of random electrostatic interactions modelled by the Fokker-Planck-type equation (1) in an Ornstein-type approximation reveals a classical diffusive behaviour in space and allows for an exact study of plasma relaxation as well as moment evolution in time.

4. Acknowledgements

I.K. is grateful for EC Research and Training funding (contract No. HPRN-CT-200000140); partial Euratom (mobility) support is also acknowledged.

References

[\dagger] On leave from: U.L.B. - Université Libre de Bruxelles, Faculté des Sciences Apliquées - C.P. 165/81 Physique Générale, Avenue F. D. Roosevelt 49, B-1050 Brussels, Belgium.
[1] R. Balescu, Transport Processes in Plasmas, vol. 1, Classical Transport North Holland, Amsterdam (1988).
[2] I. Kourakis, Plasma Phys. Control. Fusion 41587 (1999); also, A. Grecos \& I. Kourakis, in preparation.
[3] I. Kourakis, PhD thesis, U.L.B., Brussels, Belgium (2002).
[4] (a) I.Kourakis, D.Carati, B.Weyssow, Proc. Int. Conf. Plasma Phys., Québec (2000), 49-53;
(b) I.Kourakis, European Conference Abstracts (ECA) Vol. 26B, P-4.008 (2002).
[5] I. Kourakis \& A. Grecos, Comm. Nonlin. Sci. Num. Sim., 8 (3-4) (2003), in press.
[6] N. G. Van-Kampen, Stochastic Processes, North-Holland, Amsterdam (1992).
[7] M. Rosenbluth \& A. Kaufman, Phys. Rev. 109 (1) (1958), 1; J. Taylor, Phys. Rev. Lett. 6 (6) (1961), 262.

