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A multivariate Fokker-Planck-type kinetic equation modeling a test - panicle weakly interacting with 
an electrostatic plasma. in the presence of a magnetic field B . is analytically solved in an Ornstein -
Uhlenbeck - type approximation. A new set of analytic expressions are obtained for variable moments 
and panicle density as a function of time. The process is diffusive. 

1. Introduction - Formulation of the Problem 

The kinetic-theoretical treatment of long-range particle interactions ('collisions ' ) in elec­
trostatic plasma is often based on Landau-type equations [I] , describing the evolution of a 
distribution function (df) f(v ; t ) in velocity space, in the absence of external force fields. 
This description needs to be modified in the presence of an external field and/or df spatial 
inhomogeneity, which not only influence the (free) (Liouville) kinetic operator, but also 
modify the collision term. 

A Fokker-Planck-type kinetic equation (FPE) was recently derived [2, 3] from first 
principles for a test-particle (charge q, mass m) weakly interacting with a plasma em­
bedded in a uniform magnetic field B. This equation, describing the evolution of the df 
f(x , v ; t) in phase space r = {x , v} , has the form: 

(I) 

where n = qB/ mc is the cyclotron frequency; b = B / B is the unit vector in the direction 
of the field B ; 8 f / 8 z = 0 by assumption. Note the spatial diffusion term in the right­
hand side (rhs) , in fact absent in most previous studies. The lengthy expressions for the 
coefficients, omitted here, can be found in [3, 4]. 

In principle, one ai ms in obtaining an exact solution for f (x , v ; t ) in order to trace the 
evolution of variable moments in time, as well as their dependence on physical parameters 
- the magnetic field B, in particular. However, an exact analytical treatment is not possible, 
since all coefficients entering the collision term (rhs) are complicated functions of particle 
velocity v ; in addition, they explicitly depend on the magnitude of the external magnetic 
field. Nevertheless, a numerical study of the coefficients in terms of physical parameters 
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shows that there exists a region where the diffusion coefficients Dt are practically con­
stant (i.e. independent of v) while friction terms Ft are linear in v [3], [4b] (throughout 
this text, t will denote either.l or II , referring to quantities perpendicular or parallel, re­
spectively, to B). In specific, this is true for low particle velocity value (as compared to 

the thermal velocity): intuitively speaking, this is close to the standard Langevin picture 
of a (slow) heavy particle randomly interacting with (faster) light particles surrounding 
it. This study is devoted to the analytical solution of (1) , in the region of validity of this 
approximation [5]. 

Setting D t = canst., F t = I't Vt , eq. (1) may be cast into the standard form of a 
multivariate (6d) FPE: 

af a a2 f 
at = - LAij~ (Yi f) + LDij aa . . . y, . . y, Yl 

t,) t ,) 

(2) 

where f = f (Yi t ); Y is the position vector (x, v) in phase space r; cf. (VIII.6.1) in 
[6]. The diffusion (D) and drift (A) square matrices appearing in (2) are directly de­
rived from (I) via the above assumption and will be omitted here for brevity. Note that 
D is symmetric and positive definite. Retain the equilibrium condition: I't = T"J. D t 

t 

== 2!3~ D t , which is necessary and sufficient in order for the Maxwellian state: f eq(v) = 

f eq(O) e- t31"i e- t3H to cancel the rhs in (2). Eq. (1) is now approximated by (2), which 
defines a multi-dimensional Omstein-Uhlenbeck process; it may be solved for f(t) via a 
Green function method. Furthermore, since it describes a Gaussian process, an exact the­
ory exists for the calculation of variable mean values and covariances (see e.g. § VIII.6 in 
[6]). The calculation, involving multiple integrations in all r - space variables ({x, v}), is 
rather lengthy yet straightforward. This is a brief report of results (exposed in [3] in detail). 

2. Exact Solution for a Maxwelian Initial Velocity Distribution 

Assuming a Maxwellian initial distribution of the form: 

fo (x , v) = 71';/2 !3.1 !311 1/ 2 e-t3.L
vi e- t3l1v~ 5(x) 

(!3t = m / 2Tt ) we obtain the (time-dependent) df: 

- -1/ 2 -(X ) - X -
!3.1!311 !3.1 - 2 ii 2 - ( X ) -2 ( !3() !3.1 ~ ) 

f (x , Vi t ) = 71'5/ 2 e-fh 
".L e- "'II"II e- t3

.L " fo 4 .1 n V.1 P 

where p = x 2 + y2, V.1 = v; + v~ and vII = Vz ; note the definitions: 

., 
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where () = f3t I f3? = T;q ITt , T = "t.l t. We see that the velocity distribution will relax 

to the equilibrium state anticipated above, as physically expected, since: limT~oo ~t (T) 
= 2] = f3'lt = 2;:'.: while spatial distribution will exhibit a classical diffusive be-

I I 

haviour, under the influence of collisions; check that, for T » "tt l: ~lX)(T) behaves as 

~ n2 f311(1 +4f3i Q t). A similar qualitative behaviour is also obtained for a Maxwellian 
(i.e. not localized, cf. (3)) spatial distribution at t = 0, and also for an initial velocity dis­
tribution of the type: h(v; t = 0) = 8(v.l - v~)8(v ll - v~) (cf. fig. lb); details are 
omitted here, for lack of space [3]. 
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Fig. I. (a) The inverse temperature 13t(t) (scaled over 13t(oo) = /3~ ) versus time T = "ft t for 
different values of 1:1 = /3//30 = Teq / T(O ). Collisions appear more efficient in accelerating initially 
slow particles (1:1 > 1) than slowing down fast ones (1:1 < 1). 
(b) The evolution !.L(v lI ; t) of an initial 8(vll - vW) state (sharp solid line) (II - part; see in §2) 

versus velocity VII (V II E ~) (normali zed over the thermal velocity /3rl / 2) for an initial velocity 
value of 2V'h . The initial sharp profile spreads fast and attains the final zero-averaged thermalized 
state within a few time constants. 

3. Density Profile - Moments 

The mean particle density : n(x , t) = J dv f (x , V j t ) may now be calculated. Consider­
ing the initial condition: fo(x , v ) = c5(x - xo ) c5(v - vo l, we obtain: 

n(p t) = ~_1_ e-p2 / 2L2 ( t ) e- R~(t)/2L2(t) I (Ro(t) p) 
, 27r £2 (t) 0 £2 (t) (6) 

(for simplicity the direction II to the field was neglected and the gyro-phase <p was averaged 
out); Io(x) denotes the modified Bessel function; the mean square displacement L2 reads: 

(7) 

and Ro (t) = (1 + e-2'YJ.t - 2e -'YJ. t cos nt )1 /2 vlln; see that Ro ~ It = p1 after a 
while. For zero initial velocity, Ro = ° so a purely Gaussian profile is recovered. For 
higher vi, the distribution spreads in space, as expected. See that L2 (t) asymptotically 
behaves as ~ t , hence the classical diffusion mechanism encountered in §2. Earlier results 
predicting diffusion as ~ B - 2 are thus confirmed [7] . 

Finally, the (symmetric) covariance matrix ((Yk Yl )) = (Yk Yl ) - (Yk ) (Yl ) (where 
y = (x , Y, z; vx , vy, vz )) can be evaluated via the same formalism . The results for all 
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Fig. 2. The evolution h(V.L t) of an initial Maxwellian state (-1- - pan, as given by (5), (6» ver­

sus velocity V.t (normalized over the thermal velocity !3l - ' /2
) for two values of () = !3. /!3~ = 

Teq/T. (O): (a) () = 0.01 (high initial plasma temperature, see black solid line at the bottom) and (b) 
() = 10 (low initial plasma temperature, see black solid line on top). In the second case, the initial 
distribution relaxes faster to the final equilibrium state (practically attained after 2 time constants) in 
agreement with Fig. I a. 

elements are obtained in [3] and briefly exposed in [5]. For velocity covariances we obtain: 
T'· 

((vx vx )) = ((vy vy)) = ::;:;- (1 - e-2H t ) (also for ((vz vz )), upon -1----+11). In the plane 
.1 B: ((xx)) = ((yy))) = L2; cf. (7) above. 

In conclusion, the analytical treatment of random electrostatic interactions modelled 
by the Fokker-Planck-type equation (l) in an Ornstein-type approximation reveals a clas­
sical diffusive behaviour in space and allows for an exact study of plasma relaxation as 
well as moment evolution in time. 
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